Skip to main content
Log in

Noise-invariant structure pattern for image texture classification and retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A local region in an image can be defined using centre pixel and its differences with neighboring pixels. In order to characterize different texture structure in a discriminating manner, this paper proposes twoframeworks of Noise Invariant Structure Pattern (NISP) which utilizes both the centre pixel and local and global information of an image. To replace the centre pixel, a threshold computed from adding centre pixel and intensity averages is used in the LBP code computation. For adding the magnitude information, binary patterns generated by taking thresholds involving centre pixel and local and global average contrast are adopted. Also for adding the information of individual neighborhood of a given pixel, the binary patterns generated from global thresholding of local averages are used. Based on the use of local and global information, this paper suggests two noise invariant models that are CNLP and CNGP (i.e. Completed Noise-invariant Local-structure Pattern and Global–structure Pattern). The proposed NISPs are also insensitive to noise as the centre pixel is not directly used as threshold. The proposed texture descriptors are tested on some of the representative texture databases like Outex, Curet, UIUC, Brodatz and XU –HR. The experimental results have shown that the proposed schemes can achieve higher classification and retrieval rates while being more robust to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chang F-C, Huang H-C (2007) A programming model for distributed content-based image retrieval? Proc Int Conf Intelligent Inform Hiding Multimedia Signal Proc 1:210–213

    Google Scholar 

  2. Chen JL, Kundu A (1992) Rotation and gray scale transform invariant texture recognition using hidden Markov model. ICASSP-92 1–5:C69–C72

    Google Scholar 

  3. Cohen FS, Fan ZG, Patel MA (1991) Classification of rotated and scaled textured images using Gaussian Markov random field models. IEEE Trans Pattern Anal Mach Intell 13(2):192–202

    Article  Google Scholar 

  4. Dana KJ, Van Ginneken B, Nayar SK et al (1999) Reflectance and texture of real-world surfaces. ACM Trans Graph 18(1):1–34

    Article  Google Scholar 

  5. Eichmann G, Kasparis T (1988) Topologically invariant texture descriptors. Comput Vis Graphics Image Proc 41(3):267–281

    Article  Google Scholar 

  6. Guo ZH, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  7. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image Classification’. IEEE Tran Syst, Man, Cybern 6:610–621

    Article  Google Scholar 

  8. Heikkila M, Pietikainen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Comput vis Graphics Image Process Proc 4338:58–69

    Article  MATH  Google Scholar 

  9. Khellah F (2011) Texture classification using dominant neighborhood structure. IEEE Trans Image Process 19:12

    MathSciNet  Google Scholar 

  10. Lazebnik S, Schmid C, Pomce J (2005) A sparse texture representation using local affine regions. IEEE Transcations on Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  11. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  12. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  13. Liu X-F, Zhu X (2014) Kernel-optimized based fisher classification of hyperspectral imagery. J Inf Hiding Multimed Signal Proc 5(3):431–438

    Google Scholar 

  14. Ojala T, Maenpaa T, Pietikainen M, et al (2002) Outex - new framework for empirical evaluation of texture analysis algorithms, 16th International Conference on PatternRecognition, vol. I, Proceedings, pp 701–706

  15. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  16. Porter R, Canagarajah N (1997) Robust rotation invariant texture classification. IEEE Int Conf Acoustics, Speech, Signal Proc I - V:3157–3160

    Google Scholar 

  17. Shrivastava N, Tyagi V (2013) An effective scheme for image texture classification based on binary local structure pattern, Visual Computer, Springer Berlin Verlag, pp 1–10. doi:10.1007/s00371-013-0887-0

  18. Shrivastava N, Tyagi V (2015) An integrated approach for image retrieval using local binary pattern, Multimedia Tools and Applications, Springer, doi:10.1007/s11042-015-2589-2

  19. Tan XY, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  20. Varma M, Garg R (2007) Locally invariant fractal features for statistical texture classification, in Proc. International Conference on Computer Vision, pp 1-8

  21. Varma M, Zisserman A (2003) Texture classification: are filter banks necessary? International Conference on Computer Vision and Pattern Recognition, pp 691–698

  22. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81

    Article  Google Scholar 

  23. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047

    Article  Google Scholar 

  24. Xu Y, Ji H, Fermuller C (2005) A projective invariant for texture, in Proc. International Conference on Computer Vision and PatternRecognition, pp 1932–1939

  25. Xu Y, Yang X, Lin H, Ji H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid, International Conference on Computer Vision and Pattern Recognition, pp 161–168

  26. Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238

    Article  Google Scholar 

  27. Zhang D-L, Qiao J, Li J-B, Qiao L-Y, Chu S-C, Roddick JF (2014) Optimizing matrix mapping with data dependent kernel for image classification. J Inf Hiding Multimed Signal Proc 5(1):72–79

    Google Scholar 

  28. Zhao Y, et al (2012) Completed robust local binary pattern for texture classification, Neurocomputing, doi:10.1016/j.neucom.2012.10.017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, N., Tyagi, V. Noise-invariant structure pattern for image texture classification and retrieval. Multimed Tools Appl 75, 10887–10906 (2016). https://doi.org/10.1007/s11042-015-2811-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2811-2

Keyword

Navigation