Skip to main content
Log in

Efficient shape classification using region descriptors

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel scheme for efficient shape classification using region descriptors and extreme learning machine with kernels is proposed. The skeleton and boundary of the input shape image are first extracted. Then the boundary is simplified to remove noise and minor variations. Finally, region descriptors for the local skeleton, and the simplified shape signature are constructed to form a hybrid feature vector. Training and classification are then performed using kernel extreme learning machine (k-ELM) for efficient shape classification. Experimental results show that the proposed scheme is very fast and can archive high classification accuracy of 91.43 % on the challenging MPEG-7 dataset, outperforming existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alajlan N, El Rube I, Kamel MS, Freeman G (2007) Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn 40:1911–1920

    Article  MATH  Google Scholar 

  2. Antani S, Long LR, Thoma GR, Stanley RJ (2003) Vertebra shape classification using MLP for content-based image retrieval. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 1, pp 160–165

  3. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE Trans Pattern Anal Mach Intell 30:1282–1292

    Article  Google Scholar 

  4. Belongie S, Malik J, Puzicha J (2001) Matching shapes. In: Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp 454–461

  5. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24:509–522

    Article  Google Scholar 

  6. Bicego M, Murino V (2004) Investigating hidden Markov models’ capabilities in 2D shape classification. IEEE Trans Pattern Anal Mach Intell 26:281–286

    Article  Google Scholar 

  7. Chen YW, Chen YQ (2008) Invariant description and retrieval of planar shapes using radon composite features. IEEE Trans Signal Process 56:4762–4771

    Article  MathSciNet  Google Scholar 

  8. Chong CW, Raveendran P, Mukundan R (2003) The scale invariants of pseudo-Zernike moments. Pattern Anal Applic 6:176–184

    Article  MathSciNet  MATH  Google Scholar 

  9. Daliri MR, Torre V (2008) Robust symbolic representation for shape recognition and retrieval. Pattern Recogn 41:1782–1798

    Article  MATH  Google Scholar 

  10. El-Naqa I, Yongyi Y, Galatsanos NP, Nishikawa RM, Wernick MN (2004) A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging 23:1233–1244

    Article  Google Scholar 

  11. Gonzalez RC, Woods RE (2001) Digital image processing. Addison-Wesley Longman Publishing Co, Inc

    Google Scholar 

  12. Grigorishin T, Abdel-Hamid G, Yang Y (1998) Skeletonisation: an electrostatic field-based approach. Pattern Anal Applic 1:163–177

    Article  MATH  Google Scholar 

  13. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42:513–529

    Article  Google Scholar 

  14. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  15. Huet B, Kern NJ, Guarascio G, Merialdo B (2001) Relational skeletons for retrieval in patent drawings. In: Proceedings 2001 International Conference on Image Processing, 2001, vol. 2, pp 737–740

  16. Jian M, Lam K-M (2014) Face-image retrieval based on singular values and potential-field representation. Signal Process 100:9–15

    Article  Google Scholar 

  17. Jian M, Lam K-M, Dong J (2014) Illumination-insensitive texture discrimination based on illumination compensation and enhancement. Inf Sci 269:60–72

    Article  MathSciNet  Google Scholar 

  18. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497

    Article  Google Scholar 

  19. Ko B, Peng J, Byun H (2001) Region-based image retrieval using probabilistic feature relevance learning. Pattern Anal Applic 4:174–184

    Article  MathSciNet  MATH  Google Scholar 

  20. Latecki LJ, Lakämper R (1999) Convexity rule for shape decomposition based on discrete contour evolution. Comput Vis Image Underst 73:441–454

    Article  Google Scholar 

  21. Latecki LJ, Lakämper R (2000) Shape similarity measure based on correspondence of visual parts. IEEE Trans Pattern Anal Mach Intell 22:1185–1190

    Article  Google Scholar 

  22. Latecki L, Lakamper R, Eckhardt U (2000) Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 1, pp 424–429

  23. Leavers VF (2000) Use of the two-dimensional Radon transform to generate a taxonomy of shape for the characterization of abrasive powder particles. IEEE Trans Pattern Anal Mach Intell 22:1411–1423

    Article  Google Scholar 

  24. Liang L, Xiaolong W, Wei Y, Jian-Huang L (2015) Discriminatively trained and-or graph models for object shape detection. IEEE Trans Pattern Anal Mach Intell 37:959–972

    Article  Google Scholar 

  25. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29:286–299

    Article  Google Scholar 

  26. Li S, Lee M-C, Pun C-M (2009) Complex Zernike moments features for shape-based image retrieval. IEEE Trans Syst Man Cybern Syst Hum 30(1):227–237

  27. Luo P, Lin L, Liu X (2015) Learning compositional shape models of multiple distance metrics by information projection. In: IEEE Transactions on Neural Networks and Learning Systems, vol. PP, pp 1

  28. Ma Z, Zhang G, Yan L (2011) Shape feature descriptor using modified Zernike moments. Pattern Anal Applic 14:9–22

    Article  MathSciNet  Google Scholar 

  29. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26:550–571

    Article  Google Scholar 

  30. Sharvit D, Chan J, Tek H, Kimia BB (1998) Symmetry-based indexing of image data-bases. Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries, 1998, pp 56–62

  31. Song W, Weiyu Z, Zhi-pei L (2001) Shape deformation: SVM regression and application to medical image segmentation. In: Proceedings Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 2, pp 209–216

  32. Sun KB, Super BJ (2005) Classification of contour shapes using class segment sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp 727–733

  33. Tomczyk A, Szczepaniak P (2011) Adaptive potential active contours. Pattern Anal Applic 14:425–440

    Article  MathSciNet  Google Scholar 

  34. van Otterloo PJ (1991) A contour-oriented approach to shape analysis. Prentice-Hall Inter-national (UK) Ltd, Englewood Cliffs

    MATH  Google Scholar 

  35. Xiang B, Cong R, Xinggang W (2014) Shape vocabulary: a robust and efficient shape representation for shape matching. IEEE Trans Image Process 23:3935–3949

    Article  MathSciNet  Google Scholar 

  36. Xiang B, Wenyu L, Zhuowen T (2009) Integrating contour and skeleton for shape classification. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops 2009), pp 360–367

  37. Yao W, Pun CM (2009) Invariant shape representation by Radon and wavelet transforms for complex inner shapes. In: International Conference on Information and Automation, 2009. ICIA '09, pp 1144–1149

  38. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37:1–19

    Article  Google Scholar 

  39. Zheng Y Doermann D (2005) Robust point matching for two-dimensional nonrigid shapes. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp 1561–1566

  40. Zhou R, Junsong Y, Wenyu L (2013) Minimum near-convex shape decomposition. IEEE Trans Pattern Anal Mach Intell 35:2546–2552

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This research was supported in part by the Research Committee of the University of Macau (MYRG2015-00011-FST, MYRG2015-00012-FST) and the Science and Technology Development Fund of Macau SAR (008/2013/A1, 093-2014-A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Pun, CM., Vong, CM. et al. Efficient shape classification using region descriptors. Multimed Tools Appl 76, 83–102 (2017). https://doi.org/10.1007/s11042-015-3021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3021-7

Keywords

Navigation