Abstract
Effective appearance models are one critical factor for robust object tracking. In this paper, we introduce foreground feature saliency concept into the background modelling, and put forward a novel foreground saliency-based background-weighted histogram scheme (FSBWH) for target representation and tracking, which exploits salient features from both foreground and background. We think that background and foreground salient features are both crucial for target representation and tracking. Experimental results show that the proposed FSBWH scheme can improve the robustness and performance of tracker significantly especially in complex occlusions and similar background scenes.













Similar content being viewed by others
Notes
An early version of this work was presented in [31].
References
Avidan S (2004) “Support vector tracking”. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072
Bao C, Wu Y, Ling H et al (2012) “Real time robust L1 tracker using accelerated proximal gradient approach”. IEEE Conf Comput Vis Patt Recognit 1830–1837
Birchfield ST, Rangarajan S (2005) “Spatiograms versus histograms for region-based tracking”. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1158–1163
Bolme D, Beveridge J, Draper B. et al (2010) “Visual object tracking using adaptive correlation filters”. IEEE Conf Comput Vision Pattern Recognit (CVPR) 2544–2550
CAVIAR Test Case Scenarios, http://www.homepages.inf.ed.ac.uk/rbf/ CAVIAR
Chu H (2013) “Mean shift target tracking with spatiogram corrected background-weighted histogram”. Control Decis 28(3)
Comaniciu D, Ramesh V, Meer P et al (2000) “Real-time tracking of non-rigid objects using mean shift”. IEEE Conf Comput Vision Pattern Recognit(CVPR) 142–149
Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking”. IEEE Trans Pattern Anal Mach Intell 25(5):564–577
Danelljan M, Khan FS, Felsberg M et al (2014) “Adaptive color attributes for real-time visual tracking”. IEEE Conf Comput Vision Pattern Recognit (CVPR) 1090–1097
Fujii K, Salerno A, Sriskandarajah K et al (2013) “Gaze contingent cartesian control of a robotic arm for laparoscopic surgery”. IEEE/RSJ Int Conf Intell Robots Syst (IROS) 3582-3589
Henriques J, Caseiro R, Martins P et al (2012) “Exploiting the circulant structure of tracking-by-detection with kernels”. 12th Europ Conf Comput Vision 702–715
Kwak S, Nam W, Han B et al (2011) “Learning occlusion with likelihoods for visual tracking”. IEEE Int Conf Comput Vis (ICCV) 1551–1558
Li S, Wu O, Zhu C et al (2014) Visual object tracking using spatial context information and global tracking skills. Comput Vis Image Underst 125:1–15
Li X, Dick A, Wang H et al (2011) “Graph mode-based contextual kernels for robust SVM tracking”, IEEE Int Conf Comput Vision (ICCV), pp. 1156-1163, 2011.
Li Y, Ai H, Yamashita T et al (2008) Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. IEEE Trans Pattern Anal Mach Intell 30(10):1728–1740
Mei X, Ling H, Wu Y et al (2011) “Minimum error bounded efficient L1 tracker with occlusion detection”, IEEE Conf Comput Vis Pattern Recognit (CVPR) 257–1264
Mikami D, Otsuka K, Yamato J. et al (2010) “Memory-based particle filter for tracking objects with large variation in pose and appearance”. 11th Europ Conf Comput Vision 215–228
Moroni D, Pieri G (2009) Object tracking in video-surveillance”. Patt Recognit Imag Anal 19(2):271–276
Morwald T, Zillich M, Prankl J et al (2011) “Self-monitoring to improve robustness of 3D object tracking for robotics”. IEEE Int Conf Robotics Biomimetics (ROBIO) 2830–2837
Mure S, Grenier T, Meier D et al (2015) “Unsupervised spatio-temporal filtering of image sequences A mean-shift specification”. Pattern Recognit Lett
Ning J, Zhang L, Zhang D et al (2010) “Robust mean-shift tracking with corrected background-weighted histogram”. IET Comput Vis
Ning J, Zhang L, Zhang D, Wu C (2012) “Scale and orientation adaptive mean shift tracking”. IET Comput Vis 6(1):52
Olesen OV, Paulsen RR, Hojgaard L, Roed B, Larsen R (2012) Motion tracking for medical imaging: a nonvisible structured light tracking approach”. IEEE Trans Med Imaging 31(1):79–87
Pérez P, Hue C, Vermaak J et al (2002) “Color-based probabilistic tracking”. 7th Europ Conf Comput Vision 661-675
PETS 2001 dataset. http://www.cvg.cs.rdg.ac.uk/ PETS2001/
Rivlin E, Adam ISA (2006) “Robust fragments-based tracking using the integral histogram”. IEEE Int Conf Comput Vis Pattern Recognit 798–805
Tian M, Zhang W, Liu F.et al (2007) “On-line ensemble SVM for robust Object tracking” 8th Asian Conf Comput Vision 355–364
Vojir T, Noskova J, Matas J (2014) Robust scale-adaptive mean-shift for tracking”. Pattern Recogn Lett 49:250–258
Wang D, Lu H, Chen Y et al (2010) “Object tracking by multi-cues spatial pyramid matching”. 17th IEEE Int Conf Imag Process (ICIP) 3957–3960
Wang D, Shi Y, Sun W et al (2014) Object tracking with a novel method based on fs-cbwh within mean-shift framework. 11th Int Sympos Neural Networks (ISNN) 508–515
Wang D, Sun W, Chen K, Yu S (2014) Efficient mean-shift tracking using an improved weighted-histogram scheme. KSII Trans Internet Inform Syst (TIIS) 8(6):1964–1981
Wang L, Pan C, Xiang S et al (2011) Mean-shift tracking algorithm with weight fusion strategy. Imag Process (ICIP) 473--476. doi:10.1109/ICIP.2011.6116554
Zheng H, Mao X, Chen L et al (2015) “Adaptive edge-based mean shift for drastic change gray target tracking”. Optik - Int J Light Electron Optics
Acknowledgments
This work is supported by the National Natural Science Foundation of China (NSFC) under Grant 61300140.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, D., Sun, W., Yu, S. et al. A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking. Multimed Tools Appl 75, 10271–10289 (2016). https://doi.org/10.1007/s11042-015-3078-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-015-3078-3