Skip to main content

Advertisement

Log in

A near-duplicate 3D video detection algorithm by using hypercomplex representations

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Copyright protection is still a crucial open issue in the 3D video industry with the development of 3DTV coupled with the increasing 3D video spread over the internet. In this paper a novel video fingerprinting is proposed for near-duplicate 3D video detection. Instead of generating fingerprints from the color frames and the depth maps separately, the proposed algorithm processes them in a holistic manner. The hypercomplex representation developed from the RGB and depth components is used to represent the 3D contents as quaternion frames and a novel quaternion centroid of the spatio-temporal gradient orientations is exploited to generate 3D video fingerprints based on these quaternion frames. Comprehensive experiments are conducted to evaluate the performance of the proposed method, and the results show that the proposed near-duplicate 3D video detection algorithm outperforms the state-of-the-art approaches in terms of robustness and discrimination. And the proposed fingerprints are also more compact than the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bihan NL, Mars J (2004) Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process 84(7):1177–1199

    Article  MATH  Google Scholar 

  2. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux J-L (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MathSciNet  MATH  Google Scholar 

  3. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In Proc. IEEE CVPR-2005, pp. 886–893

  4. Douze M, Jegou H, Schmid C (2010) An image-based approach to video copy detection with spatio-temporal post-filtering. IEEE Trans Multimedia 12(4):257–266

    Article  Google Scholar 

  5. Esmaeili MM, Fatourechi M, Ward RK (2011) A robust and fast video copy detection system using content-based fingerprinting. IEEE Trans Inf Forensic Secur 6(1):213–226

    Article  Google Scholar 

  6. Fehn C (2004) Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. Proc SPIE 5291:93–104, Conference Stereoscopic Displays and Virtual Reality Systems XI

    Article  Google Scholar 

  7. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghouti L (2014) Robust perceptual color image hashing using quaternion singular value decomposition. In Proc. IEEE ICASSP-2014, pp. 3794–3798

  9. Hamilton WR (1848) Researches respecting quaternions: first series. Trans R Ir Acad 21:199–296

    Google Scholar 

  10. Hampapur A, Hyun K-H, Bolle R (2002) Comparison of sequence matching techniques for video copy detection. In Proc. of Conf. on Storage and Retrieval for Media Databases, pp. 194–201

  11. Jégou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In Proc. ECCV-2008, pp. 304–317

  12. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In Proc. IEEE CVPR-2004, pp. 506–513

  13. Khodabakhshi N, Hefeeda M (2013) Spider: a system for finding 3D video copies. ACM Trans Multimed Comput Commun Appl 9(1):7:1–7:20

    Article  Google Scholar 

  14. Kim HD, Lee JW, Oh TW, Lee HK (2012) Robust DT-CWT watermarking for DIBR 3D images. IEEE Trans Broadcast 58(4):533–543

    Article  Google Scholar 

  15. Laradji IH, Ghouti L, Khiari E-H (2013) Perceptual hashing of color images using hypercomplex representations. In Proc. IEEE ICIP-2013, pp. 4402–4406

  16. Lee S, Yoo CD (2008) Robust video fingerprinting for content-based video identification. IEEE Trans Circuits Syst Video Technol 18(7):983–988

    Article  Google Scholar 

  17. Lee S, Yoo CD, Kalker T (2009) Robust video fingerprinting based on symmetric pairwise boosting. IEEE Trans Circuits Syst Video Technol 19(9):1379–1388

    Article  Google Scholar 

  18. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensic Secur 10(3):507–518

    Article  Google Scholar 

  19. Lian S, Nikolaidis N, Sencar HT (2010) Content-based video copy detection — a survey. Intell Multimedia Anal Secur Appl 282:253–273

    Article  Google Scholar 

  20. Liu Z, Liu T, Gibbon DC, Shahraray B (2010) Effective and scalable video copy detection. In Proc. MIR-2010, pp. 119–128

  21. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  22. Mehta S, Prabhakaran B (2014) 3D content fingerprinting. In Proc. IEEE ICIP-2014, pp. 4797–4801

  23. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  24. Mohan R (1998) Video sequence matching. In Proc. IEEE ICASSP-1998, pp. 3697–3700

  25. Ramachandra V, Zwicker M, Nguyen T (2008) 3D video fingerprinting. In Proc. 3DTV conference: the true vision - capture, transmission and display of 3D video, pp. 81–84

  26. Robinson JT (1981) The K-D-B-tree: a search structure for large multidimensional dynamic indexing. In Proc. of ACM SIGMOD Int. Conf. Management Data, pp. 10–18

  27. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1):7–42

    Article  MATH  Google Scholar 

  28. Schwarz H, Marpe D, Wiegand T (2010) Description of exploration experiments in 3D video coding. ISO, Dresden, Germany, Tech. Rep. MPEG2010N11274

  29. Sun J, Wang J, Zhang J, Nie X, Liu J (2012) Video hashing algorithm with weighted matching based on visual saliency. IEEE Signal Process Lett 19(6):328–331

    Article  Google Scholar 

  30. Sun Z, Zhu Y, Liu X, Zhang L (2013) A robust video finger-printing algorithm based on centroid of spatio-temporal gradient orientations. KSII Trans Internet Inf Syst 7(11):2754–2768

    Article  Google Scholar 

  31. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl. doi:10.1007/s11042-014-2381-8

    Google Scholar 

  32. Zitnick CL, Kang SB, Uyttendaele M, Winder S, Szeliski R (2004) High-quality video view interpolation using a layered representation. In Proc. ACM SIGGRAPH-2004, pp. 600–608

Download references

Acknowledgments

This work was supported by Shenzhen Engineering Laboratory of Broadband Wireless Network Security, the Science and Technology Development Fund of Macao SARFDCT056/2012/A2, UM Multi-year Research Grant MYRG144 (Y1-L2) - FST11 - ZLM, and the Next Generation of Information Technology Industry Development Special Fund of Shenzhen XXH-YY20130329010018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhu, Y., Xing, X. et al. A near-duplicate 3D video detection algorithm by using hypercomplex representations. Multimed Tools Appl 76, 1055–1071 (2017). https://doi.org/10.1007/s11042-015-3086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3086-3

Keywords