Skip to main content
Log in

Secure variable-capacity self-recovery watermarking scheme

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Since existing watermarking schemes usually cannot recover the tampered position, a secure variable-capacity self-recovery watermarking scheme is proposed. Both watermark embedding capacity and security are taken into account. The original image is divided into texture blocks and smooth blocks, and the texture blocks not only save traditional information, and save the “details” information. The so-called “details” information refers to the texture information, which not only can effectively resist mean attack, but also help to improve the quality of the recovered image to meet the needs of practical work. And then according to the characteristics of different blocks, the different length compound watermarks are produced. The so-called “compound watermarks” include the authentication watermarks and information watermarks. Authentication watermarks are used to detect the tampered region, and the information watermarks which include basic watermark and additional watermark are used to recover image. Then the compound watermarks are inserted into the other blocks based on the new proposed scheme called three level secret-key embedding scheme (TLSES). And then detect the tamper blocks and recover them by the three level tamper detection scheme (TLTDS). The experimental results show that the paper can not only accurately detect the tamper region and recover image, but also can effectively resist mean attack and collage attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abbasi A, Woo CS, Shamshirband S (2015) Robust image watermarking based on Riesz transformation and IT2FLS. Measurement 74(10):116–129. doi:10.1016/j.measurement.2015.06.006

    Article  Google Scholar 

  2. Botta M, Cavagnino D, Pomponiu V (2015) A successful attack and revision of a chaotic system based fragile watermarking scheme for image tamper detection. Int J Electron Commun 69(1):242–245. doi:10.1016/j.aeue.2014.09.004

    Article  Google Scholar 

  3. Cai N, Zhu NN, Weng SW et al (2015) Difference angle quantization index modulation scheme for image watermarking. Signal Process Image Commun 34(5):52–60. doi:10.1016/j.image.2015.03.010

    Article  Google Scholar 

  4. Chang JD, Chen CS, Tsai CS (2013) Lbp-based fragile watermarking scheme for image tamper detection and recovery. In: 2013 I.E. international symposium on next-generation electronics (ISNE), IEEE. Tamsui, New Taipei City, pp 173–176. doi: 10.1109/ISNE.2013.6512330

  5. Chang C, Fan YH, Tai WL (2008) Four-scanning attack on hierarchical digital watermarking method for image tamper detection and recovery. Pattern Recogn 41(2):654–661. doi:10.1016/j.patcog.2007.06.003

    Article  MATH  Google Scholar 

  6. Chen YC (2014) Research on image authenticatin technology of invariant feature-based digital watermarking and perceptual hash. South China University of Technology

  7. Chen F, He HJ, Wang HX (2012) Variable-payload self-recovery watermarking scheme for digital image authentication. Chin J Comput 35(1):154–163

    Article  Google Scholar 

  8. Dadkhah S, Manaf AA, Hori Y et al (2014) An effective SVD-based image tampering detection and self-recovery using active watermarking. Signal Process Image Commun 29(10):1197–1210. doi:10.1016/j.image.2014.09.001

    Article  Google Scholar 

  9. Deguillaume F, Voloshynovskiy S, Pun T (2003) Secure hybrid robust watermarking resistant against tampering and copy attack. Signal Process 83(10):2133–2147. doi:10.1016/S0165-1684(03)00172-5

    Article  MATH  Google Scholar 

  10. Fridrich J, Goljan M (1999) Images with self-correcting capabilities. Proc IEEE Int Conf Image Process Kobe: IEEE 1999:792–796. doi:10.1109/ICIP.1999.817228

    Google Scholar 

  11. Fridrich J, Goljan M, Memon N (2002) Cryptanalysis of the Yeung–Mintzer fragile watermarking technique. J Electron Imaging 11(2):262–274

    Article  Google Scholar 

  12. Ghosal SK, Mandal JK (2014) Binomial transform based fragile watermarking for image authentication. J Inf Secur Appl 19(4–5):272–281. doi:10.1016/j.jisa.2014.07.004

    Google Scholar 

  13. He HJ, Zhang JS, Chen F (2008) A self-recovery fragile watermarking scheme for image authentication with superior localization. Sci China: Ser F Inf Sci 51(10):1487–1507

    MATH  Google Scholar 

  14. He HJ, Zhang JS, Chen F (2009) Adjacent-block based statistical method for self-embedding watermarking techniques. Signal Process 89(8):1557–1566. doi:10.1016/j.sigpro.2009.02.009

    Article  MATH  Google Scholar 

  15. He HJ, Zhang JS, Tai HM (2008) Block-Chain Based Fragile Watermarking Scheme with Superior Localization. Proc of the 10th Int Conf on Information Hiding. Springer, Berlin, pp 147–160. doi: 10.1007/978-3-540-88961-8_11

  16. He HJ, Zhang JS, Tai HM (2009) Self-recovery fragile watermarking using block-neighborhood tampering characterization. Proc of the 11th Int Conf on Information Hiding. Springer, Berlin. pp 132–145.doi: 10.1007/978-3-642-04431-1_10

  17. Holiman M, Memon N (2000) Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes. IEEE Trans Image Process 3(10):432–441. doi:10.1109/83.826780

    Article  Google Scholar 

  18. Hsu LY, Hu HT (2015) Blind image watermarking via exploitation of inter-block prediction and visibility threshold in DCT domain. J Vis Commun Image Represent 32(10):130–143. doi:10.1016/j.jvcir.2015.07.017

    Article  Google Scholar 

  19. Hu WC, Dai JS, Jian JS (2015) Effective composite image detection method based on feature inconsistency of image components. Digital Signal Process 39(4):50–62. doi:10.1016/j.dsp.2015.01.006

    Article  Google Scholar 

  20. Lee TY, Lin SD (2008) Dual watermark for image tamper detection and recovery. Pattern Recogn 41(11):3497–3506. doi:10.1016/j.patcog.2008.05.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Li CL, Wang YH, Ma B et al (2011) A novel self-recovery fragile watermarking scheme based on dual-redundant-ring structure. Comput Electr Eng 37(6):927–940. doi:10.1016/j.compeleceng.2011.09.007

    Article  Google Scholar 

  22. Li CL, Wang YH, Ma B et al (2012) Tamper detection and self-recovery of biometric images using salient region-based authentication watermarking scheme. Comput Standard Interfaces 4(4):367–379. doi:10.1016/j.csi.2012.01.003

    Article  Google Scholar 

  23. Li CL, Zhang ZX, Wang YH et al (2015) Dither modulation of significant amplitude difference for wavelet based robust watermarking. Neurocomputing 166(20):404–415. doi:10.1016/j.neucom.2015.03.039

    Article  Google Scholar 

  24. Lin PL, Hsieh CK, Huang PW (2005) A hierarchical digital watermarking method for image tamper detection and recovery. Pattern Recogn 38(12):2519–2529. doi:10.1016/j.patcog.2005.02.007

    Article  Google Scholar 

  25. Lou OJ (2010) Feature point based image watermarking scheme in contourlet domain against geometrical attacks. J Comput Res Dev 35(1):154–163

    Google Scholar 

  26. Muhammad AQ, Mohamed D (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal Process Image Commun 39(11):46–74. doi:10.1016/j.image.2015.08.008

    Google Scholar 

  27. Nidaa AA (2015) Image watermark detection techniques using quadtrees. Appl Comput Informatics 11(2):102–115. doi:10.1016/j.aci.2014.07.003

    Article  Google Scholar 

  28. Qi XJ, Xin X (2015) A singular-value-based semi-fragile watermarking scheme for image content authentication with tamper localization. J Vis Commun Image Represent 30(7):312–327. doi:10.1016/j.jvcir.2015.05.006

    Article  Google Scholar 

  29. Qian ZX, Feng GR, Zhang XP (2011) Image self-embedding with high-quality restoration capability. Digital Signal Process 21(2):278–286. doi:10.1016/j.dsp.2010.04.006

    Article  Google Scholar 

  30. Qin C, Chang CC, Chen PY (2012) Self-embedding fragile watermarking with restoration capability based on adaptive bit allocation mechanism. Signal Process 92(4):1137–1150. doi:10.1016/j.sigpro.2011.11.013

    Article  Google Scholar 

  31. Qin C, Chang CC, Chen KN (2013) Adaptive self-recovery for tampered images based on VQ indexing and inpainting. Signal Process 9(4):933–946. doi:10.1016/j.sigpro.2012.11.013

    Article  Google Scholar 

  32. Ronaldo R, Pedro GF, Mylene CQF (2016) Detecting tampering in audio-visual content using QIM watermarking. Inf Sci 328(20):127–143. doi:10.1016/j.ins.2015.08.040

    Google Scholar 

  33. Sergio BS, Nandi AK (2011) Secure fragile watermarking method for image authentication with improved tampering localisation and self-recovery capabilities. Signal Process 91(4):728–739. doi:10.1016/j.sigpro.2010.07.019

    Article  MATH  Google Scholar 

  34. Son CH, Choo H (2014) Color recovery of black-and –white halftoned images via categorized color-embedding look-up tables. Digital Signal Process 28(5):93–105. doi:10.1016/j.dsp.2014.02.004

    Article  Google Scholar 

  35. Verma VS, Jha RK, Ojha A (2015) Significant region based robust watermarking scheme in lifting wavelet transform domain. Expert Syst Appl 42(21):8184–8197. doi:10.1016/j.eswa.2015.06.041

    Article  Google Scholar 

  36. Wang H, Anthony TSH, Li SJ (2014) A novel image restoration scheme based on structured side information and its application to image watermarking. Signal Process Image Commun 29(7):773–787. doi:10.1016/j.image.2014.05.001

    Article  Google Scholar 

  37. Wang XY, Hou LM, Yang HY (2008) A robust watermarking scheme based on image feature and pseudo-zenike moments. J Comput Res Dev 45(5):772–778

    Google Scholar 

  38. Wang XY, Liu YN, Li S et al (2015) A new robust digital watermarking using local polar harmonic transform. Comput Electr Eng 29(4): in press. doi:10.1016/j.compeleceng.2015.04.001

  39. Wang XY, Wang AL, Yang HY et al (2014) A new robust digital watermarking based on exponent moments invariants in nonsubsampled contourlet transform. Comput Electr Eng 40(3):942–955. doi:10.1016/j.compeleceng.2013.12.017

    Article  MathSciNet  Google Scholar 

  40. Wu Y, Deng RH (2005) Security of an ill-posed operator for image authentication. IEEE Trans Circuits Syst Video Technol 15(1):161–163. doi:10.1109/TCSVT.2004.839978(410)1

    Article  Google Scholar 

  41. Yang CW, Shen JJ (2010) Recover the tampered image based on VQ indexing. Signal Process 90(1):331–343. doi:10.1016/j.sigpro.2009.07.007

    Article  MATH  Google Scholar 

  42. Yang HY, Wang XY, Wang P et al (2015) Geometrically resilient digital watermarking scheme based on radial harmonic fourier moments magnitude. Int J Electron Commun 69(1):389–399. doi:10.1016/j.aeue.2014.10.012

    Article  Google Scholar 

  43. Yu M, Wang J, Jiang GY (2015) New fragile watermarking method for stereo image authentication with localization and recovery. Int J Electron Commun 69(1):361–370. doi:10.1016/j.aeue.2014.10.006

    Article  Google Scholar 

  44. Zhang XP, Wang SZ (2007) Statistical fragile watermarking capable of locating individual tampered pixels. IEEE Signal Process Lett 14(10):727–730. doi:10.1109/LSP.2007.896436

    Article  Google Scholar 

  45. Zhang XP, Wang SZ (2009) Fragile watermarking scheme using a hierarchical mechanism. Signal Process 89(4):675–679. doi:10.1016/j.sigpro.2008.10.001

    Article  MATH  Google Scholar 

  46. Zhang X, Wang S, Qian Z (2011) Reference sharing mechanism for watermark self-embedding. IEEE Trans Image Process 20(2):485–495. doi:10.1109/TIP.2010.2066981

    Article  MathSciNet  Google Scholar 

  47. Zhu SM, Liu JM (2010) A novel fragile watermarking scheme for image tamper detection and recovery. Chin Opt Lett 8(7):661–665

    Article  Google Scholar 

Download references

Acknowledgments

This paper has been supported by the National Youth Fund (Grant No. 61401060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Wang, X., Li, M. et al. Secure variable-capacity self-recovery watermarking scheme. Multimed Tools Appl 76, 6941–6972 (2017). https://doi.org/10.1007/s11042-016-3328-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3328-z

Keywords

Navigation