Skip to main content
Log in

Image mosaicing using voronoi diagram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this article, we propose a new method of image stitching that computes, in a robust manner, the transformation model applied to creating a panorama that is close to reality. The random selection of matching points used in existing methods, using Random Sample Consensus (RANSAC) or the threshold of the execution process (iteration number) cannot generally provide sufficient precision. Our approach, in this regard, comes to solve this problem. The calculation of the transformation model is based on the VORONOI diagram that divides images into regions to be used in the matching instead of control points. In this case, the transformation estimation will be based on the regions seeds that provide the best correlation score. Among the advantages of our method is solving problems related to outliers that can, in existing methods, affect the reliability of the mosaic. The results obtained are satisfactory in terms of stability, quality, execution time and reduction of the computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Alahi A, Ortiz R, Vandergheynst P (2012) Freak: fast retina keypoint. In Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on, 510–517. Ieee. doi:10.1109/CVPR.2012.6247715

  2. Allène C, Pons JP, Keriven R (2008) Seamless image-based texture atlases using multi-band blending. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, 1–4. IEEE. doi:10.1109/ICPR.2008.4761913

  3. Azzari P, Stefano LD, Bevilacqua A (2005) An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera. Adv Video Signal Based Surveillance. AVSS 2005. IEEE Conf, 511–516. IEEE. doi:10.1109/AVSS.2005.1577321

  4. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. doi:10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  5. Bevilacqua A, Azzari P (2007) A fast and reliable image mosaicing technique with application to wide area motion detection. Image Analysis Recognition. Springer Berlin Heidelberg. 501–512. doi:10.1007/978-3-540-74260-9_45

  6. Brandt J (2010) Transform coding for fast approximate nearest neighbor search in high dimensions. IEEE Conf. Computer Vision Pattern Recognition. [Data file]. Retrieved from Adobe System: http://www.adobe.com/go/datasets

  7. Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74(1):59–73. doi:10.1007/s11263-006-0002-3

    Article  Google Scholar 

  8. Burt PJ, Adelson EH (1983) A multiresolution spline with application to image mosaics. ACM Transactions on Graphics (TOG) 2(4):217–236. doi:10.1145/245.247

    Article  Google Scholar 

  9. Choi YH, Seong YK, Choi TS (2002) Image mosaicing with automatic scene segmentation for video indexing. Int Conf Consumer Electronics, 74–75. doi:10.1109/ICCE.2002.1013933

  10. Fang X, Zhu J, Luo B (2012) Image mosaic with relaxed motion. SIViP 6(4):647–667. doi:10.1007/s11760-010-0194-4

    Article  Google Scholar 

  11. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395. doi:10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  12. Ghosh D, Kaabouch N (2016) A survey on image mosaicing techniques. J Vis Commun Image Represent 34:1–11. doi:10.1016/j.jvcir.2015.10.014

    Article  Google Scholar 

  13. Hodge VJ, Austin JA (2004) Survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126. doi:10.1007/s10462-004-4304-y

    Article  MATH  Google Scholar 

  14. Hu J, Deng W, Guo J (2011) 2D projective transformation based active shape model for facial feature location. Eighth Int Conf Fuzzy Syst Knowl Discov 4:2442–2446. doi:10.1109/FSKD.2011.6019993

    Google Scholar 

  15. Huang W, Han X (2013) An improved RANSAC algorithm of color image stitching. Proc Chinese Intell Automation. 21–28. doi:10.1007/978-3-642-38466-0_3

  16. Jalink A, McAdoo J, Halama G, Liu H (1996) CCD mosaic technique for large-field digital mammography. Med Imaging, IEEE Trans 15(3):260–267. doi:10.1109/42.500135

    Article  Google Scholar 

  17. Jing N, Fan Y, Lingyi S (2013) Improved method of automatic image stitching based on SURF. Future Info Commun Technol Ubiquitous HealthCare (Ubi-HealthTech), 2013 First Int Symp, 1–5. IEEE. doi:10.1109/Ubi-HealthTech.2013.6708059

  18. Kim BS, Lee SH, Cho NI (2011) Real-time panorama canvas of natural images. Consumer Electronics, IEEE Trans 57(4):1961–1968. doi:10.1109/TCE.2011.6131177

    Article  Google Scholar 

  19. Laraqui A, Saaidi A, Jarrar A, Satori K (2014) Image stitching based on the geometric solution. Info Sci Tech (CIST), Third IEEE Int Colloquium IEEE, 340–344. doi:10.1109/CIST.2014.7016643

  20. Laraqui M, Saaidi A, Mouhib A, Abarkan M (2015) Images matching using voronoï regions propagation. 3D Res 6(3):1–16. doi:10.1007/s13319-015-0056-5

    Article  Google Scholar 

  21. Lhuillier M, Quan L (2002) Quasi-dense reconstruction from image sequence. In Computer Vision—ECCV 2002, 125–139. Springer Berlin Heidelberg. doi:10.1007/3-540-47967-8_9

  22. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  23. Ma X, Liu D, Zhang J, Xin J (2015) A fast affine-invariant features for image stitching under large viewpoint changes. Neurocomputing 151:1430–1438. doi:10.1016/j.neucom.2014.10.045

    Article  Google Scholar 

  24. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In Computer Vision—ECCV 2002, 128–142. Springer Berlin Heidelberg. doi:10.1007/3-540-47969-4_9

  25. Montijano E, Martinez S, Sagues C (2015) Distributed robust consensus using RANSAC and dynamic opinions. Control Syst Technol, IEEE Trans 23(1):150–163. doi:10.1109/TCST.2014.2317771

    Article  Google Scholar 

  26. Raguram R, Frahm JM, Pollefeys M (2008) A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. vol. 5303 LNCS, no. PART 2, 500–513. doi: 10.1007/978-3-540-88688-4_37

  27. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119. doi:10.1109/TPAMI.2008.275

    Article  Google Scholar 

  28. Saaidi A, Tairi H, Satori K (2006) Fast stereo matching using rectification and correlation techniques. ISCCSP, Second Int Symp Commun, Control Signal Proc, 1–4

  29. Sali E, Wolfson H (1992) Texture classification in aerial photographs and satellite data. Int J Remote Sensing, 3395–3408. doi:10.1080/01431169208904130

  30. Sooknanan K, Kokaram A, Corrigan D, Baugh G, Harte N, Wilson J (2012) Indexing and selection of well-lit details in underwater video mosaics using vignetting estimation. In OCEANS, 2012-Yeosu, 1–7. IEEE. doi:10.1109/OCEANS-Yeosu.2012.6263541

  31. Szeliski R (2002) Video mosaics for virtual environments, IEEE Comput Graphics Appl, 22–30. doi:10.1109/38.486677

  32. Trajković M, Hedley M (1998) Fast corner detection. Image Vis Comput 16(2):75–87. doi:10.1016/S0262-8856(97)00056-5

    Article  Google Scholar 

  33. Wang X, Ying X, Liu Y-J, Xin S-Q, Wang W, Gu X, Mueller-Wittig W, He Y (2015) Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput Des, 51–61. doi:10.1016/j.cad.2014.08.023

  34. Wei GQ, Qian J, Schramm HF, Novak CL (2003) Method for intensity correction in CR mosaic by combined nonlinear and linear transformations. Med Imaging 2003. Int Soc Optics Photonics. 979–985. doi:10.1117/12.480830

  35. Yu G, Morel JM (2011) Asift: an algorithm for fully affine invariant comparison. Image Proc On Line, 2011. doi:10.5201/ipol.2011.my-asift

  36. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000. doi:10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laraqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laraqui, A., Baataoui, A., Saaidi, A. et al. Image mosaicing using voronoi diagram. Multimed Tools Appl 76, 8803–8829 (2017). https://doi.org/10.1007/s11042-016-3478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3478-z

Keywords

Navigation