Skip to main content
Log in

Rotation and scale invariant upsampled log-polar fourier descriptor for copy-move forgery detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Digital image forgery is becoming increasingly popular with the rapid progress of digital media editing tools. Copy-move forgery (CMF) is one of the most common methods of digital image forgery. For CMF detection (CMFD), we propose an upsampled log-polar Fourier (ULPF) descriptor that is robust to several geometric transformations including rotation, scaling, sheering, and reflection. We first describe the theoretical background of the ULPF representation. Then, we propose a feature extraction algorithm that can extract rotation and scale invariant features from the ULPF representation. In addition, we analyze the common CMFD processing pipeline and improve a part of processing pipeline to efficiently handle various types of tampering attacks. In our simulation, we present comparative results between the proposed feature descriptor and state-of-the-art ones with proven performance guarantees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: Fast Retina keypoint, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 16–21

  2. Amerini I, Ballan L, Caldelli R, Bimbo AD, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099–1110

    Article  Google Scholar 

  3. Amerini I, Ballan L, Caldelli R, Bimbo AD, Tongo LD, Serra G (2013) Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Process Image Commun 28(6):659–669

    Article  Google Scholar 

  4. Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: Speeded Up robust features. Comput Vis Image Understand 110(3):346–359

    Article  Google Scholar 

  5. Bayram S, Sencar HT, Memon N (2009) An efficient and robust method for detecting copy-move forgery, IEEE International Conference on Acoustics, Speech and Signal Processing, 1053–1056

  6. Beis JS, Lowe DG (1997) Shape indexing using approximate Nearest-Neighbour search in High-Dimensional spaces, IEEE Conference on Computer Vision and Pattern Recognition, 1000–1006

  7. Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: a survey. Digit Investig 10(3):226–245

    Article  Google Scholar 

  8. Cao Y, Gao T, Fan L, Yang Q (2012) A robust detection algorithm for copy-move forgery in digital images. Forensic Sci Int 214(1):33–43

    Article  Google Scholar 

  9. Chapman B, Jost G, Pas RVD (2008) Using openMP: portable shared memory parallel programming MIT press

  10. Chen C, Ni J, Huang J (2013) Blind detection of median filtering in digital images: a difference domain based approach. IEEE Trans Image Process 22(2):4699–4710

    Article  MathSciNet  Google Scholar 

  11. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forensics Secur 7(6):1841–1854

    Article  Google Scholar 

  12. Christlein V, Riess C, Angelopoulou E (2010) On rotation invariance in copy-move forgery detection, IEEE International Workshop on Information Forensics and Security, 1–6

  13. Farid H (2009) Image forgery detection. IEEE Signal Proc Mag 26(2):16–25

    Article  Google Scholar 

  14. Fridrich AJ, Soukal BD, Lukas A.J (2003) Detection of copy-move forgery in digital images, Digital Forensic Research Workshop

  15. Huang Y, Lu W, Sun W, Long D (2011) Improved DCT-based detection of copy-move forgery in images. Forensic Sci Int 206(1):178–184

    Article  Google Scholar 

  16. Kang X, Wei S (2008) Identifying tampered regions using singular value decomposition in digital image forensics. Int Conf Comput Sci Soft Eng 3:926–930

    Google Scholar 

  17. Khan Er. S, Kulkarni Er. A (2010) An efficient method for detection of copy-move forgery using discrete wavelet transform. Int J Comput Sci Eng 2(5):1801–1806

    Google Scholar 

  18. Kirchner M, Schttle P, Riess C (2015) Thinking beyond the block: block matching for copy-move forgery detection revisited, Media Watermarking, Security, and Forensics

  19. Kwon GR, Lama RK, Pyun JY, Park CS (2015) Multimedia digital rights management based on selective encryption for flexible business model, Multimedia Tools and Applications. doi:10.1007/s11042-015-2563-z

  20. Langille A, Gong M (2006) An Efficient Match-based Duplication Detection Algorithm, Canadian Conference on Computer and Robot Vision, 64–71

  21. Leutenegger S, Stefan M (2011) BRISK: Binary Robust invariant scalable keypoints, IEEE International Conference on Computer Vision (ICCV), 2548–2555

  22. Li W, Yu N (2010) Rotation robust detection of copy-move forgery, IEEE International Conference on Image Processing, 2113–2116

  23. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  24. Li L, Li S, Zhu H, Chu SC, Roddick JF, Pan JS (2013) An efficient scheme for detecting copy-move forged images by local binary patterns. J Inf Hiding and Multimedia Signal Process 4(1):46–56

    Google Scholar 

  25. Lin H, Wang C, Kao Y (2009) Fast copy-move forgery detection. WSEAS Trans Signal Process 5(5):188–197

    Google Scholar 

  26. Lin HJ, Wang CW, Kao YT (2009) Fast copy-move forgery detection. WSEAS Trans Signal Process 5(5):188–197

    Google Scholar 

  27. Liu W, Zhang H, Tao D, Wang Y, Lu K (2016) Large-scale paralleled sparse principal component analysis. Multimedia Tools Appl 75(3):1481–1493

    Article  Google Scholar 

  28. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  29. Luo Y, Tao D, Geng B, Xu C, Maybank S (2013) Manifold regularized multitask learning for semi-supervised multilabel image classification. IEEE Trans Image Process 22(2):523–536

    Article  MathSciNet  Google Scholar 

  30. Luo Y, Wen Y, Tao D, Gui J, Xu C (2016) Large margin Multi-Modal Multi-Task feature extraction for image classification. IEEE Trans Image Process 25 (1):414–427

    Article  MathSciNet  Google Scholar 

  31. Mahdian B, Saic S (2007) Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci Int 171(2):180–189

    Article  Google Scholar 

  32. Muhammad G, Hussain M, Bebis G (2012) Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digit Investig 9(1):49–57

    Article  Google Scholar 

  33. Murali S, Chittapur GB, S 1 PH, Anami BS (2012) Comparison and analysis of photo image forgery detection techniques. Int J Comput Sci & Appl 2(6):45–56

  34. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing, 2nd. Prentice-Hall, Englewood-Cliffs, NJ

    Google Scholar 

  35. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inf Forensics Secur 5(4):857–867

    Article  Google Scholar 

  36. Popescu A, Farid H (2004) Exposing digital forgeries by detecting duplicated image regions, Department of Computer Science, Dartmouth College, Tech. Rep. TR2004-515

  37. Ryu S, Lee M, Lee H (2010) Detection of copy-rotate-move forgery using Zernike moments. Lect Notes Comput Sci 6387:51–65

    Article  Google Scholar 

  38. Schneider M, Chang S (1996) A robust content based digital signature for image authentication. Int Conf Image Process (ICIP) 3:227–230

    Google Scholar 

  39. Sekhar R, Shaji RS (2016) A study on segmentation-based copy-move forgery detection using DAISY descriptor, Proceedings of the International Conference on Soft Computing Systems, 223–233

  40. Sorensen HV, etal (1987) Real-valued fast fourier transform algorithms. IEEE Trans Acoust Speech Signal Process 35(6):849–863

    Article  Google Scholar 

  41. Wang J, Liu G, Zhang Z, Dai Y, Wang Z (2009) Fast and robust forensics for image Region-Duplication forgery. Acta Automatica Sinica 35(12):1488–1495

    Article  Google Scholar 

  42. Wu Q, Wang S, Zhang X (2010) Detection of image region-duplication with rotation and scaling tolerance. Lect Notes Comput Sci 6421:100–108

    Article  Google Scholar 

  43. Yaroslavsky L, Ye Wang DFT (2000) DCT, MDCT, DST and signal fourier spectrum analysis, Signal Processing Conference, 1–4

  44. Yeung M, Mintzer F (1997) An Invisible Watermarking Technique for Image Verification, International Conference on Image Processing (ICIP), vol. 2, pp 690–683

  45. http://www5.cs.fau.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goo-Rak Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CS., Kim, C., Lee, J. et al. Rotation and scale invariant upsampled log-polar fourier descriptor for copy-move forgery detection. Multimed Tools Appl 75, 16577–16595 (2016). https://doi.org/10.1007/s11042-016-3575-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3575-z

Keywords

Navigation