Skip to main content
Log in

Error-correcting output codes for multi-label emotion classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multi-modal affective data such as EEG and physiological signals is increasingly utilized to analyze of human emotional states. Due to the noise existed in collected affective data, however, the performance of emotion recognition is still not satisfied. In fact, the issue of emotion recognition can be regarded as channel coding, which focuses on reliable communication through noise channels. Using affective data and its label, the redundant codeword would be generated to correct signals noise and recover emotional label information. Therefore, we utilize multi-label output codes method to improve accuracy and robustness of multi-dimensional emotion recognition by training a redundant codeword model, which is the idea of error-correcting output codes. The experiment results on DEAP dataset show that the multi-label output codes method outperforms other traditional machine learning or pattern recognition methods for the prediction of emotional multi-labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. AlZoubi O, D’Mello SK, Calvo RA (2012) Detecting naturalistic expressions of nonbasic affect using physiological signals. IEEE Trans Affect Comput 3(3):298–310

    Article  Google Scholar 

  2. Calvo RA, Brown I, Scheding S (2009) Effect of experimental factors on the recognition of affective mental states through physiological measures. In: AI 2009: advances in artificial intelligence. Springer, pp 62–70

  3. Castellano G, Kessous L, Caridakis G (2008) Emotion recognition through multiple modalities: face, body gesture, speech. In: Affect and emotion in human-computer interaction. Springer, pp 92–103

  4. Chanel G, Rebetez C, Bétrancourt M, Pun T (2011) Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans Syst Man Cybern Part A Syst Humans 41(6):1052–1063

    Article  Google Scholar 

  5. Costello DJ, Forney GD (2007) Channel coding: the road to channel capacity. Proc IEEE 95(6):1150–1177

    Article  Google Scholar 

  6. Cover TM, Thomas JA (2012) Elements of information theory. Wiley

  7. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG (2001) Emotion recognition in human-computer interaction. IEEE Signal Process Mag 18(1):32–80

    Article  Google Scholar 

  8. Ekman P (1989) Handbook of social psychophysiology, chap. The argument and evidence about universals in facial expressions of emotion. Wiley handbooks of psychophysiology. Wiley, Oxford, pp 143–164

    Google Scholar 

  9. Ekman P (1992) An argument for basic emotions. Cognit Emot 6(3–4):169–200

    Article  Google Scholar 

  10. Gunes H, Piccardi M (2007) Bi-modal emotion recognition from expressive face and body gestures. J Netw Comput Appl 30(4):1334–1345

    Article  Google Scholar 

  11. Gunes H, Schuller B, Pantic M, Cowie R (2011) Emotion representation, analysis and synthesis in continuous space: a survey. In: IEEE international conference on automatic face & gesture recognition and workshops (FG 2011), 2011. IEEE, pp 827–834

  12. Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  MATH  Google Scholar 

  13. Hotelling H (1936) Relations between two sets of variates. Biometrika 28 (3/4):321–377

    Article  MATH  Google Scholar 

  14. Jirayucharoensak S, Pan-Ngum S, Israsena P (2014) Eeg-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci World J 2014:627892–1–627892-10

    Article  Google Scholar 

  15. Kandemir M, Vetek A, Gönen M, Klami A, Kaski S (2014) Multi-task and multi-view learning of user state. Neurocomputing 139:97–106

    Article  Google Scholar 

  16. Kim J, André E (2008) Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell 30(12):2067–2083

    Article  Google Scholar 

  17. Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Article  Google Scholar 

  18. Kolodyazhniy V, Kreibig SD, Gross JJ, Roth WT, Wilhelm FH (2011) An affective computing approach to physiological emotion specificity: toward subject-independent and stimulus-independent classification of film-induced emotions. Psychophysiology 48(7):908–922

    Article  Google Scholar 

  19. Kong EB, Dietterich TG (1995) Error-correcting output coding corrects bias and variance. In: ICML, pp 313–321

  20. Langford J, Zhang T, Hsu DJ, Kakade SM (2009) Multi-label prediction via compressed sensing. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in neural information processing systems. http://papers.nips.cc/paper/3824-multi-label-prediction-via-compressed-sensing.pdf, vol 22. Curran Associates, Inc., pp 772–780

  21. Li C, Feng Z, Xu C (2014) Physiological-based emotion recognition with irs model. In: International conference on smart computing (SMARTCOMP), 2014. IEEE, pp 208–215

  22. Li C, Xu C, Feng Z (2016) Analysis of physiological for emotion recognition with the irs model. Neurocomputing 178:103–111

    Article  Google Scholar 

  23. Li K, Li X, Zhang Y, Zhang A (2013) Affective state recognition from eeg with deep belief networks. In: IEEE international conference on bioinformatics and biomedicine (BIBM), 2013. IEEE, pp 305–310

  24. Li X, Zhang P, Song D, Yu G, Hou Y, Hu B (2015) Eeg based emotion identification using unsupervised deep feature learning

  25. Morris JD (1995) Observations: Sam: the self-assessment manikin an efficient cross-cultural measurement of emotional response. J Advert Res 35(6):63–68

    Google Scholar 

  26. Nasoz F, Lisetti CL, Vasilakos AV (2010) Affectively intelligent and adaptive car interfaces. Inf Sci 180(20):3817–3836

    Article  Google Scholar 

  27. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23 (10):1175–1191

    Article  Google Scholar 

  28. Schuller B, Rigoll G, Lang M (2003) Hidden markov model-based speech emotion recognition. In: Proceedings of the 2003 IEEE international conference on acoustics, speech, & signal processing, vol 2. IEEE, pp II–1

  29. Tai F, Lin HT (2012) Multilabel classification with principal label space transformation. Neural Comput 24(9):2508–2542

    Article  MathSciNet  MATH  Google Scholar 

  30. Übeyli ED (2007) Ecg beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Process 17(3):675–684

    Article  Google Scholar 

  31. Wagner J, Kim J, André E (2005) From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: IEEE international conference on multimedia and expo. IEEE, pp 940–943

  32. Xu C, Feng Z, Meng Z (2016) Affective experience modeling based on interactive synergetic dependence in big data. Futur Gener Comput Syst 54:507–517

    Article  Google Scholar 

  33. Xu C, Tao W, Meng Z, Feng Z (2015) Robust visual tracking via online multiple instance learning with Fisher information. Pattern Recog 48(12):3917–3926

    Article  Google Scholar 

  34. Zhang X, Xu C, Sun X, Baciu G (2016) Schatten-q regularizer constrained low rank subspace clustering model. Neurocomputing 182:36–47

    Article  Google Scholar 

  35. Zhang X, Sun X, Xu C, Baciu G (2016) Multiple feature distinctions based saliency flow model. Pattern Recog 54:190–205

    Article  Google Scholar 

  36. Zhang Y, Schneider JG (2011) Multi-label output codes using canonical correlation analysis. In: International conference on artificial intelligence and statistics, pp 873–882

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (no. 61304262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Feng, Z. & Xu, C. Error-correcting output codes for multi-label emotion classification. Multimed Tools Appl 75, 14399–14416 (2016). https://doi.org/10.1007/s11042-016-3608-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3608-7

Keywords

Navigation