Skip to main content
Log in

Line detection algorithm based on adaptive gradient threshold and weighted mean shift

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Line detection is a classical problem in computer vision and image processing, and it is widely used as a basic method. Most of existing line detection algorithms are based on edge information, whose discontinuity limited the detection result. Meanwhile, some other algorithms only use gradient magnitudes, and neglect the function of gradient directions. In this paper, an adaptive gradient threshold and omni-direction line growing method based on line detection with weighted mean shift procedure and 2D slice sampling strategy (referred to as LSWMSAllDir) is proposed. It makes full use of the magnitudes and directions of the gradient to detect lines in the image. Experiments on synthetic data and real scene image data showed that the improve algorithm was the most accurate when compared with Progressive Probabilistic Hough Transform (PPHT), line segment detector (LSD), parameter free edge drawing (EDPF) and original line segment detection using weighted mean shift (LSWMS) algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akinlar C, Topal C (2011) EDLines: a real-time line segment detector with a false detection control. Pattern Recogn Lett 32(13):1633–1642

    Article  Google Scholar 

  2. Akinlar C, Topal C (2012) EDPF: a real-time parameter-free edge segment detector with a false detection control. Int J Pattern Recognit Artif Intell 26(1):3898–3898

    Article  MathSciNet  Google Scholar 

  3. Ben-Tzvi D, Sandler MB (1990) A combinatorial Hough transform. Pattern Recogn Lett 11(3):167–174

    Article  MATH  Google Scholar 

  4. Caprile B, Torre V (1990) Using vanishing points for camera calibration. Int J Comput Vis 4(2):127–139

    Article  Google Scholar 

  5. Collins R T. (2003) Mean-shift blob tracking through scale space[C]//Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 I.E. Computer Society Conference on. IEEE, 2: II-234-40 vol. 2

  6. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  7. Denis P, Elder JH, Estrada F (2008) Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery[M]. Springer, Berlin Heidelberg, pp. 197–210

    Google Scholar 

  8. Desolneux A, Moisan L, Morel JM (1999) Meaningful alignments. Int J Comput Vis 40(1):7–23

    Article  MATH  Google Scholar 

  9. Fernandes LA, Oliveira MM (2008) Real-time line detection through an improved hough transform voting scheme, pattern recognition. Pattern Recogn 41:299–314

    Article  MATH  Google Scholar 

  10. Fränti P, Ageenko EI, Kälviäinen H, et al. (1998) Compression of line drawing images using Hough transform for exploiting global dependencies. Proc 4th Jt Conf Inf Sci (JCIS’98) 1998:433–436

    Google Scholar 

  11. Galambos C, Kittler J, Matas J (2001) Gradient based progressive probabilistic Hough transform//Vision, Image and Signal Processing, IEE Proceedings. IET 148(3):158–165

    Google Scholar 

  12. Grompone R, Jakubowicz J. (2007) Geometry-based unsupervised urban-area detection. IEEE Geoscience and Remote Sensing Letters

  13. Guo S, Kong Y, Tang Q, et al. (2008) Hough transform for line detection using segment voting weighted by surround suppression. Visual Information Engineering, 2008. VIE 2008. 5th International Conference on. IET,:47–51.

  14. Han B, Comaniciu D, Zhu Y, Davis LS (2008) Sequential kerneldensity approximation and its application to real-time visualtracking. IEEE Trans Pattern Anal Mach Intell 30(7):1186–1197

    Article  Google Scholar 

  15. Illingworth J, Kittler J (1987) The adaptive Hough transform. IEEE Trans Pattern Anal Mach Intell 5:690–698

    Article  Google Scholar 

  16. Karnieli A, Meisels A, Fisher L, et al. (1996) Automatic extraction and evaluation of geological linear features from digital remote sensing data using a Hough transform. Photogramm Eng Remote Sens 62(5):525–531

    Google Scholar 

  17. Lee H J, Ahn H J, Song J H, et al.( 2001) Hough transform for line and plane detection based on the conjugate formulation//photonics west 2001-electronic imaging. International Society for Optics and Photonics: 2e44–252

  18. Li H, Lavin MA, Le Master RJ (1986) Fast Hough transform: A hierarchical approach. Comput Vis, Graph Image Process 36(2):139–161

    Article  Google Scholar 

  19. Lu X, Yao J, Li K, et al. (2015) CANNYLINES: A PARAMETER-FREE LINE SEGMENT DETECTOR Image Processing (ICIP), 2015 I.E. International Conference on. IEEE 2015:507–511

    Google Scholar 

  20. Matas J, Galambos C, Kittler J (2000) Robust detection of lines using the progressive probabilistic Hough transform. Comput Vis Image Underst 78(1):119–137

    Article  Google Scholar 

  21. Meksen T M, Boudraa M, Drai R. (2006) Detection of cracks in materials using the randomized Hough transform on ultrasonic images//Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision: 202–206

  22. Nieto M, Cuevas C, Salgado L, et al. (2011) Line segment detection using weighted mean shift procedures on a 2D slice sampling strategy. Pattern Anal Applic 14(2):149–163

    Article  MathSciNet  Google Scholar 

  23. Panagiotakis C, Kokinou E (2015) Linear pattern detection of geological faults via a topology and shape optimization method, IEEE trans. On geoscience and. Remote Sens 8(1):3–12

    Article  Google Scholar 

  24. San DK, Turker M (2010) Building extraction from high resolution satellite images using Hough transform. International archives of the photogrammetry, remote sensing and spatial information. Science 38(1):1063–1068

    Google Scholar 

  25. Soto-Pinto C, Arellano-Baeza A, Sánchez G (2013) A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Comput Geosci 57:93–103

    Article  Google Scholar 

  26. Strzodka R, Ihrke I, Magnor M (2003) A graphics hardware implementation of the generalized hough transform for fast object recognition, scale, and 3d pose detection//image analysis and processing, 2003. Proceedings. 12th international conference on. IEEE:188–193

  27. Von Gioi RG, Jakubowicz J, Morel JM, et al. (2010) LSD: a fast line segment detector with a false detection control[J. IEEE Trans Pattern Anal Mach Intell 32(4):722–732

    Article  Google Scholar 

  28. Voon LFLY, Bolland P, Laligant O, et al. (1997) Gradient-based Hough transform for the detection and characterization of defects during nondestructive inspection[C]//electronic Imaging’97. International Society for Optics and. Photonics:140–146

  29. Xu L, Oja E, Kultanen P (1990) A new curve detection method: randomized Hough transform (RHT). Pattern Recogn Lett 11(5):331–338

    Article  MATH  Google Scholar 

  30. Yang C, Duraiswami R, Davis L (2004) Similarity Measure for Nonparametric Kernel Density Based Object Tracking. In Eighteenth Conf Neural Inf Proces Syst 2004:13–16

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant Nos. 61461025, 61402371); Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JM6317, 2013JQ8039); Fundamental Research Funds for the Central Universities (Grant No. 3102014JCQ01060); NPU Foundation for Fundamental Research (Grant No. JCY20130130); The Seed Foundation of Innovation and Creation for Graduate Students in NPU (Grant No. Z2016024, Z2016121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, L., Xie, H. et al. Line detection algorithm based on adaptive gradient threshold and weighted mean shift. Multimed Tools Appl 75, 16665–16682 (2016). https://doi.org/10.1007/s11042-016-3835-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3835-y

Keywords

Navigation