Abstract
In this paper, we study on how to boost image segmentation algorithms. First of all, a novel fusion scheme is proposed to combine different segmentations with mutual information to reduce misclassified pixels and obtain an accurate segmentation. As the class label of each pixel depends on the pixel’s gray level and neighbors’ labels, the fusion scheme takes both spatial and intensity information of pixels into account. Then, a detail thresholding segmentation case is designed using the proposed fusion scheme. In the case, the local Laplacian filter is used to get the smoothed version of original image. To accelerate segmentation, a discrete curve evolution based Otsu method is employed to segment the original image and its smoothed version to get two different segmentation maps. The fusion scheme is used to fuse the two maps to get the final segmentation result. Experiments on medical MR-T2 brain images are conducted to demonstrate the effectiveness of the proposed segmentation fusion method. The experimental results indicate that the proposed algorithm can improve segmentation accuracy and it is superior to other multilevel thresholding methods.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig5a_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig5b_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-016-4098-3/MediaObjects/11042_2016_4098_Fig12_HTML.gif)
Similar content being viewed by others
References
Arora S, Acharya J, Verma A et al (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recogn Lett 29(2):119–125
Aubry M, Paris S, Hasinoff SW et al (2014) Fast local Laplacian filters: theory and applications. ACM Trans Graph 33(5):1935–1946
Ayech M, Ziou D (2016) Terahertz image segmentation using k-means clustering based on weighted feature learning and random pixel sampling. Neurocomputing 175:243–264
Bai X, Latecki L, Liu W (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29(3):449–462
Bai X, Wang W (2014) Saliency-SVM: an automatic approach for image segmentation. Neurocomputing 136:243–255
Banerjee S, Mitra S, Shankar B (2016) Single seed delineation of brain tumor using multi-thresholding. Inf Sci 330:88–103
Bhandari A, Kumar A, Singh G (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730
Chae S H, Moon H M, Chung Y et al (2014) Automatic lung segmentation for large-scale medical image management. Multimed Tools Appl 1–17
Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl 38(5):4998–5004
Chang H, Chen Z, Huang Q et al (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644
Chen X, Udupa J, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046
Dirami A, Hammouche K, Diaf M et al (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153
Gloger O, Tonnies K, Laqua R, Volzke H (2015) Fully automated renal tissue volumetry in MR volume data using prior-shape-based segmentation in subject-specific probability maps. IEEE Trans Biomed Eng 62(10):2338–2351
Horng M (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Systems with Applications 38(11):13785–13791
Julie D, Agnès D, José-Luis L et al (2007) A nonparametric approach for histogram segmentation. IEEE Trans Image Process 16(1):253–261
Kang Y, Yamaguchi K, Naito T, Ninomiya Y (2011) Multiband image segmentation and object recognition for understanding road scenes. IEEE Trans Intell Transp Syst 12(4):1423–1433
Kapur J, Sahoo P, Wong A (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285
Khan S, Sanches J, Ventura R (2010) Robust band profile extraction using constrained nonparametric machine-learning technique. IEEE Trans Biomed Eng 57(10):2587–2591
Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47
Ledig C, Shi W, Bai W et al (2014) Patch-based evaluation of image segmentation. 2014 I.E. Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society 3065–3072
Lee S, Chung S, Park R (1990) A comparative performance study of several global thresholding techniques for segmentation. Computer Vis Graphics Image Process 52(2):171–190
Lei Z, Qiang J (2011) A Bayesian network model for automatic and interactive image segmentation. IEEE Trans Image Process 20(9):2582–2593
Li Y, Feng X (2016) A multiscale image segmentation method. Pattern Recogn 52:332–345
Li C, Huang R, Ding Z, Gatenby J, Metaxas D, Gore J (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016
Ma J, Lu L (2013) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Comput Vis Image Underst 117(9):1072–1083
Maitra M, Chatterjee A (2008) A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34(2):1341–1350
Manikandan S, Ramar K, Iruthayarajan M et al (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568
Oliva D, Cuevas E, Pajares G et al (2014) A multilevel thresholding algorithm using Electromagnetism Optimization. Neurocomputing 139:357–381
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27
Paris S, Hasinoff SW, Kautz J (2011) Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans Graph 30(4)
Peng B, Zhang D (2011) Automatic image segmentation by dynamic region merging. IEEE Trans Image Process 20(12):3592–3605
Sathya P, Kayalvizhi R (2011) Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl 38(12):15549–15564
Sathya P, Kayalvizhi R (2011) Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 74(14):2299–2313
Sathya P, Kayalvizhi R (2011) Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44(10):1828–1848
Smistad E, Falch T, Bozorgi M, Elster A, Lindseth F (2015) Medical image segmentation on GPUs-A comprehensive review. Med Image Anal 20(1):1–18
Wang X, Wu Z, Chen L, Yang H (2016) Pixel classification based color image segmentation using quaternion exponent moments. Neural Netw 74:1–13
Weinland D, Ronfard R, Boyer E (2011) A survey of vision-based methods for action representation, segmentation and recognition. Comput Vis Image Underst 115(2):224–241
Yang H, Ahuja N (2014) Automatic segmentation of granular objects in images: combining local density clustering and gradient-barrier watershed. Pattern Recogn 47(6):2266–2279
Yin P (1999) A fast scheme for optimal thresholding using genetic algorithms. Signal Process 72(2):85–95
Zhang L, Gao Y, Xia Y, Lu Y, Shen K, Ji R (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimed 16(2):470–479
Acknowledgments
This research is supported by the National Natural Science Foundation of China for Youths (No.61305046), Jilin Province Science Foundation for Youths (No.20130522117JH), and the Natural Science Foundation of Jilin Province (No.20140101193JC).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feng, Y., Shen, X., Chen, H. et al. Segmentation fusion based on neighboring information for MR brain images. Multimed Tools Appl 76, 23139–23161 (2017). https://doi.org/10.1007/s11042-016-4098-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-4098-3