Skip to main content
Log in

A biologically inspired spatio-chromatic feature for color object recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Color information has been acknowledged for its important role in object recognition and scene classification. How to describe the color characteristics and extract combined spatial and chromatic feature is a challenging task in computer vision. In this paper we extend the robust SIFT feature on processed opponent color channels to obtain a spatio-chromatic descriptor for color object recognition. The color information processing is implemented under a biologically inspired hierarchical framework, where cone cells, single-opponent and double-opponent cells are simulated respectively to mimic the color perception of primate visual system. The biologically inspired method is tested for object recognition task on two public datasets, and the results support the potential of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Soccer team dataset is available from: http://lear.inrialpes.fr/people/vandeweijer/data.

  2. Bird dataset is available from: http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

References

  1. Abdel-Hakim A E, Farag A A (2006) CSIFT: A SIFT descriptor with color invariant characteristics. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR), IEEE, vol 2, pp 1978–1983

  2. Alexiou I, Bharath AA (2014) Spatio-chromatic opponent features. In: European conference on computer vision. Springer, pp 81–95

  3. Baran R, Glowacz A, Matiolanski A (2015) The efficient real-and non-real-time make and model recognition of cars. Multimedia Tools and Applications 74(12):4269–4288

    Article  Google Scholar 

  4. Bosch A, Zisserman A, Muoz X (2008) Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell 30(4):712–727

    Article  Google Scholar 

  5. Burghouts G J, Geusebroek J M (2009) Performance evaluation of local colour invariants. Comput Vis Image Underst 113(1):48–62

    Article  Google Scholar 

  6. Chang C C, Lin C J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  7. Chatterjee S, Callaway E M (2003) Parallel colour-opponent pathways to primary visual cortex. Nature 426(6967):668–671

    Article  Google Scholar 

  8. Conway B R, Chatterjee S, Field G D, Horwitz G D, Johnson E N, Koida K, Mancuso K (2010) Advances in color science: from retina to behavior. J Neurosci 30(45):14,955–14,963

    Article  Google Scholar 

  9. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), IEEE, vol 1, pp 886–893

  10. Eagleman D M (2001) Visual illusions and neurobiology. Nat Rev Neurosci 2 (12):920–926

    Article  Google Scholar 

  11. Fan C, Wang L, Liu P, Lu K, Liu D (2015) Compressed sensing based remote sensing image reconstruction via employing similarities of reference images. Multimedia Tools and Applications. doi:10.1007/s11042-015-3004-8

    Google Scholar 

  12. Gao S, Yang K, Li C, Li Y (2013) A color constancy model with double-opponency mechanisms. In: Proceedings of the IEEE international conference on computer vision, pp 929–936

  13. Hering E (1964) Outlines of a theory of the light sense. Harvard University Press

  14. Johnson E N, Hawken M J, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4(4):409–416

    Article  Google Scholar 

  15. Khan FS, Anwer RM, Van De Weijer J, Bagdanov AD, Vanrell M, Lopez AM (2012) Color attributes for object detection. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3306–3313

  16. Khan R, Van de Weijer J, Shahbaz Khan F, Muselet D, Ducottet C, Barat C (2013) Discriminative color descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2866–2873

  17. Lazebnik S, Schmid C, Ponce J (2005) A maximum entropy framework for part-based texture and object recognition. In: Tenth IEEE international conference on computer vision (ICCV’05), IEEE, vol 1, pp 832–838

  18. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE computer society conference on computer vision and pattern recognition, IEEE, vol 2, pp 2169–2178

  19. Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J Neurosci 10(2):649–669

    Google Scholar 

  20. Li Y, Tao C, Tan Y, Shang K, Tian J (2016) Unsupervised multilayer feature learning for satellite image scene classification. IEEE Geosci Remote Sens Lett 13(2):157–161

    Article  Google Scholar 

  21. Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, IEEE, vol 2, pp 1150–1157

  22. Lu H, Wei J, Wang L, Liu P, Liu Q, Wang Y, Deng X (2016) Generalized nonconvex low-rank approximationbased on reference information for remote sensing image reconstruction. MDPI Remote Sensing (8:499)

  23. Ma J, Zhou H, Zhao J, Gao Y, Jiang J, Tian J (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481

    Article  Google Scholar 

  24. Ma J, Chen C, Li C, Huang J (2016a) Infrared and visible image fusion via gradient transfer and total variation minimization. Information Fusion 31:100–109

    Article  Google Scholar 

  25. Ma J, Zhao J, Yuille A L (2016b) Non-rigid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64

    Article  MathSciNet  Google Scholar 

  26. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1-2):43–72

  27. Nayar S K, Bolle R M (1996) Reflectance based object recognition. Int J Comput Vis 17(3):219–240

    Article  Google Scholar 

  28. Schwarz M W, Cowan W B, Beatty J C (1987) An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans Graph 6(2):123–158

    Article  Google Scholar 

  29. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426

    Article  Google Scholar 

  30. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: Proceedings of ninth IEEE international conference on computer vision, IEEE, pp 1470–1477

  31. Slater D, Healey G (1996) The illumination-invariant recognition of 3D objects using local color invariants. IEEE Trans Pattern Anal Mach Intell 18(2):206–210

    Article  Google Scholar 

  32. Swain M J, Ballard D H (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  33. Van de Weijer J, Schmid C (2007) Applying color names to image description. In: 2007 IEEE international conference on image processing, IEEE, vol 3, pp III–493

  34. Van De Weijer J, Schmid C (2006) Coloring local feature extraction. In: Computer vision–ECCV 2006, Springer, pp 334–348

  35. Van de Weijer J, Gevers T, Bagdanov A D (2006) Boosting color saliency in image feature detection. IEEE Trans Pattern Anal Mach Intell 28(1):150–156

    Article  Google Scholar 

  36. Van De Sande K E, Gevers T, Snoek C G (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596

    Article  Google Scholar 

  37. Wang L, Lu K, Liu P (2015) Compressed sensing of a remote sensing image based on the priors of the reference image. IEEE Geosci Remote Sens Lett 12(4):736–740

    Article  Google Scholar 

  38. Wei J, Huang Y, Lu K, Wang L (2015) Fields of experts based multichannel compressed sensing. Journal of Signal Processing Systems:1–11

  39. Wei J, Huang Y, Lu K, Wang L (2016) Nonlocal low rank-based compressed sensing for remote sensing image reconstruction

    Google Scholar 

  40. Yang K, Gao S, Li C, Li Y (2013) Efficient color boundary detection with color-opponent mechanisms. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2810–2817

  41. Zhang J, Barhomi Y, Serre T (2012) A new biologically inspired color image descriptor. In: Computer vision–ECCV 2012, Springer, pp 312–324

  42. Zhao H, Zhou B, Liu P, Zhao T (2014) Modulating a local shape descriptor through biologically inspired color feature. J Bionic Eng 11(2):311–321

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), the Provincial Natural Science Foundation of Hubei under Grant 2016CFB278, and the National Natural Science Foundation of China under Grant 61601416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijing Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Zhang, Y., Choo, KK.R. et al. A biologically inspired spatio-chromatic feature for color object recognition. Multimed Tools Appl 76, 18731–18747 (2017). https://doi.org/10.1007/s11042-016-4252-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4252-y

Keywords

Navigation