Skip to main content
Log in

A security framework for cloud-based video surveillance system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Utilizing cloud services in running large-scale video surveillance systems is not uncommon. However, special attention should be given to data security and privacy because, typically, data travels over insecure public networks. In this work, we propose an end-to-end security framework for a cloud-based video surveillance system that supports a large number of cameras. Our framework provides mutual authentication, session key management, data confidentiality, and data integrity. Consequently, encrypted video frames can only be sourced from authenticated cameras and only destined to authenticated cloud devices where the integrity of such frames can also be verified against potential change. As video streaming is a very delay-sensitive application, we study different variations of the proposed framework to find security options that achieve the best trade-off between the added delay and the security of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abd-Elrahman E, Abid M, Afifi H (2010) Video streaming security: window-based hash chain signature combines with redundancy code - youtube scenario as an internet case study. In: 2010 IEEE International symposium on multimedia (ISM), pp 33–40. doi:10.1109/ISM.2010.15

  2. Alamri A, Hossain MS, Almogren A, Hassan MM, Alnafjan K, Zakariah M, Seyam L, Alghamdi A (2016) Qos-adaptive service configuration framework for cloud-assisted video surveillance systems. Multimed Tools Appl 75(21):13,333–13,348. doi:10.1007/s11042-015-3074-7

    Article  Google Scholar 

  3. Alsmirat M, Sarhan N (2012) Cross-layer optimization and effective airtime estimation for wireless video streaming. In: 2012 21st International conference on computer communications and networks (ICCCN), pp 1–7. doi:10.1109/ICCCN.2012.6289275

  4. Alsmirat MA, Jararweh Y, Obaidat I, Gupta BB (2016) Automated wireless video surveillance: an evaluation framework. J Real-Time Image Process:1–20. doi:10.1007/s11554-016-0631-x

  5. Alsmirat MA, Jararweh Y, Obaidat I, Gupta BB (2016) Internet of surveillance: a cloud supported large-scale wireless surveillance system. J Supercomput:1–20. doi:10.1007/s11227-016-1857-x

  6. Baugher M, McGrew D, Naslund M, Carrara E, Norrman K (2004) Rfc 3711: The secure real-time transport protocol (srtp). Request for Comments, IETF

  7. Chang YT, Lin YC (2016) Dynamic reconfigurable encryption and decryption with chaos/m-sequence mapping algorithm for secure h.264/avc video streaming over ocdma passive optical network. Multimed Tools Appl 75(16):9837–9859. doi:10.1007/s11042-015-2784-1

  8. Cmu/mit image set. http://vasc.ri.cmu.edu/idb/html/face/frontal_images/ [Online; accessed Nov-2015]

  9. Daemen J, Rijmen V (1999) Aes proposal: Rijndael

  10. Delp EJ, Lin ET (2005) Watermarking streaming video: the temporal synchronization problem. Springer New York, New York, pp 135–153

    Google Scholar 

  11. Eisenbarth T, Kumar S, Paar C, Poschmann A, Uhsadel L (2007) A survey of lightweight-cryptography implementations. IEEE Des Test Comput 24(6):522–533. doi:10.1109/MDT.2007.178

  12. Fehér G, Oláh I (2008) Enhancing wireless video streaming using lightweight approximate authentication. Multimed Syst 14(3):167–177. doi:10.1007/s00530-008-0122-4

  13. Forouzan BA (2008) Cryptography & network security, 1st edn. McGraw-Hill, Inc., New York

    Google Scholar 

  14. Gupta BB, Badve OP (2016) Taxonomy of dos and ddos attacks and desirable defense mechanism in a cloud computing environment. Neural Comput Appl:1–28. doi:10.1007/s00521-016-2317-5

  15. Gupta B, Agrawal DP, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security, 1st edn. IGI Global, Hershey

    Book  Google Scholar 

  16. Hyncica O, Kucera P, Honzik P, Fiedler P (2011) Performance evaluation of symmetric cryptography in embedded systems. In: Proceedings of the 6th IEEE international conference on intelligent data acquisition and advanced computing systems, vol 1, pp 277–282. doi:10.1109/IDAACS.2011.6072756

  17. Ke CH, Shieh CK, Hwang WS, Ziviani A et al (2008) An evaluation framework for more realistic simulations of mpeg video transmission. J Inf Sci Eng 24(2):425–440

    Google Scholar 

  18. Lee H, Lee K, Shin Y (2009) Aes implementation and performance evaluation on 8-bit microcontrollers. Int J Comput Sci Inf Secur 6(1):

  19. Li J, Li YK, Chen X, Lee PPC, Lou W (2015) A hybrid cloud approach for secure authorized deduplication. IEEE Trans Parallel Distrib Syst 26(5):1206–1216. doi:10.1109/TPDS.2014.2318320

  20. Li J, Li J, Chen X, Jia C, Lou W (2015) Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans Comput 64(2):425–437. doi:10.1109/TC.2013.208

  21. Li J, Liu Z, Chen X, Xhafa F, Tan X, Wong DS (2015) L-encdb: a lightweight framework for privacy-preserving data queries in cloud computing. Knowl-Based Syst 79:18–26. doi:10.1016/j.knosys.2014.04.010. http://www.sciencedirect.com/science/article/pii/S0950705114001324

  22. Lin YN, Huang KT (2014) The improvement of video streaming security in communication with multiple modes ciphering for handheld devices. Springer International Publishing, Cham, pp 355–364. doi:10.1007/978-3-319-05503-9_35

    Google Scholar 

  23. Obaidat I, Alsmirat MA, Jararweh Y (2016) Completing ieee 802.11e implementation in ns-3. In: 2016 7th International conference on information and communication systems (ICICS), pp 190–195. doi:10.1109/IACS.2016.7476109

  24. Rajan MA, Varghese A, Narendra N, Singh M, Shivraj VL, Chandra GPB (2016) Security and privacy for real time video streaming using hierarchical inner product encryption based publish-subscribe architecture. In: 30th International conference on advanced information networking and applications workshops (WAINA), pp 373–380. doi:10.1109/WAINA.2016.101

  25. Recommendation 500-10. Methodology for the subjective assessment of the quality of television pictures. ITU-R Recommendation BT.500–10 (2000)

  26. Reza TA, Barbeau M (2013) QoS aware adaptive security scheme for video streaming in MANETs. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 324–340. doi:10.1007/978-3-642-37119-6_21

    MATH  Google Scholar 

  27. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126. doi:10.1145/359340.359342

  28. Schulzrinne H, Casner S, Frederick R, Jacobson V (2003) Rtp: a transport protocol for real-time applications. Tech. rep

  29. Seedorf J (2009) Security issues for P2P-based voice- and video-streaming applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 95–110. doi:10.1007/978-3-642-05437-2_10

    Google Scholar 

  30. Shirani S, Kossentini F, Kallel S, Ward R (1997) Reconstruction of jpeg coded images in lossy packet networks. Submit-ted to IEEE Transactions on Communications

  31. Stergiou C, Psannis KE, Kim BG, Gupta B (2016) Secure integration of iot and cloud computing. Fut Gen Comput Syst. doi:10.1016/j.future.2016.11.031. http://www.sciencedirect.com/science/article/pii/S0167739X1630694X

  32. Sun Z, Zhang Q, Li YA, Tan Y (2016) Dppdl: a dynamic partial-parallel data layout for green video surveillance storage. IEEE Transa Circ Syst Vid Technol 99:1–1. doi:10.1109/TCSVT.2016.2605045

  33. Tawalbeh L, Jararweh Y, Mohammad A (2013) An integrated radix-4 modular divider/multiplier hardware architecture for cryptographic applications. Int Arab J Inf Technol 9(3):284–290

    Google Scholar 

  34. The network simulator ns-3. http://www.nsnam.org/

  35. Turner S, Chen L (2011) Updated security considerations for the md5 message-digest and the hmac-md5 algorithms

  36. Venugopalan R, Ganesan P, Peddabachagari P, Dean A, Mueller F, Sichitiu M (2003) Encryption overhead in embedded systems and sensor network nodes: modeling and analysis Proceedings of the 2003 international conference on compilers, architecture and synthesis for embedded systems, CASES ’0. ACM, New York, pp 188–197, doi:10.1145/951710.951737

  37. Wang CH, Liu HS, Hsieh CC (2014) Rate-sensitive leverage of qos and qop for ubiquitous video streaming via buffer-aware feedback control. Multimed Tools Appl 73(2):737–761. doi:10.1007/s11042-012-1186-x

  38. Wei X, Li WX, Ran C, Pi CC, Ma YJ, Sheng YX (2015) Architecture and scheduling method of cloud video surveillance system based on IoT. Springer International Publishing, Cham, pp 551–560. doi:10.1007/978-3-319-27161-3_50

    Google Scholar 

  39. Xu Z, Mei L, Liu Y, Hu C, Chen L (2016) Semantic enhanced cloud environment for surveillance data management using video structural description. Computing 98(1):35–54. doi:10.1007/s00607-014-0408-7

  40. Yang X, Zhang H, Ma H, Li W, Fu G, Tang Y (2016) Multi-resource allocation for virtual machine placement in video surveillance cloud. Springer International Publishing, Cham, pp 544–555. doi:10.1007/978-3-319-31854-7_49

    Google Scholar 

  41. Yi S, Jing X, Zhu J, Zhu J, Cheng H (2012) The model of face recognition in video surveillance based on cloud computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 105–111. doi:10.1007/978-3-642-30126-1_18

    Google Scholar 

Download references

Acknowledgments

This work was funded in parts by the Jordan University of Science and Technology Deanship of Scientific Research grant number 20150348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Alsmirat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsmirat, M.A., Obaidat, I., Jararweh, Y. et al. A security framework for cloud-based video surveillance system. Multimed Tools Appl 76, 22787–22802 (2017). https://doi.org/10.1007/s11042-017-4488-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4488-1

Keywords

Navigation