Abstract
Malaria is a life-threatening disease caused by parasite of genus plasmodium, which is transmitted through the bite of infected Anopheles. A rapid and accurate diagnosis of malaria is demanded for proper treatment on time. Mostly, conventional microscopy is followed for diagnosis of malaria in developing countries, where pathologist visually inspects the stained slide under light microscope. However, conventional microscopy has occasionally proved inefficient since it is time consuming and results are difficult to reproduce. Alternate techniques for malaria diagnosis based on computer vision were proposed by several researchers. The aim of this paper is to review, analyze, categorize and address the recent developments in the area of computer aided diagnosis of malaria parasite. Research efforts in quantification of malaria infection include normalization of images, segmentation followed by features extraction and classification, which were reviewed in detail in this paper. At the end of review, the existent challenges as well as possible research perspectives were discussed.





Similar content being viewed by others
References
Abdul-Nasir AS, Mashor MY, Mohamed Z (2012) Modified global and modified linear contrast stretching algorithms: new colour contrast enhancement techniques for microscopic analysis of malaria slide images. Computational and Mathematical Methods in Medicine, vol. 2012. Article ID 637360, p 16
Aimi Salihah A-N, Yusoff M, Zeehaida M (2013) Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering. Wseas Transactions on Biology and Biomedicine, vol. 10
Malaria Site – History, Pathogenesis, Clinical Features, Diagnosis, Treatment, Complications and Control of Malaria. (n.d.). Retrieved September, 2015, from: http://www.malariasite.com
Anggraini D et al (2011) Automated status identification of microscopic images obtained from malaria thin blood smears. In Electrical Engineering and Informatics (ICEEI), 2011 International conference on. 17:347–352 IEEE
Arco J et al (2015) Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Systems with Applications, 42(6):3041–3047
World Health Organization. (2010). Basic malaria microscopy: Part I. Learner's guide. Basic malaria microscopy: Part I. Learner's guide., (Ed. 2)
Bates, I., Bekoe, V., & Asamoa-Adu, A. (2004). Improving the accuracy of malaria-related laboratory tests in Ghana. Malaria Journal, 3(1):38
Bernard Marcus PD (2009) Deadly diseases and epidemics: malaria. Chelsea House Publishers, New York, Second Edition ed
Chakrabortya K et al (2015) A combined algorithm for Malaria detection from thick smear blood slides J Health Med Inform 2015
Chayadevi M, Raju G (2015) Automated colour segmentation of malaria parasite with fuzzy and fractal methods. In Computational Intelligence in Data Mining-Volume (3):53–63. Springer India
Dallet C, Kareem S, Kale I (2014) Real time blood image processing application for malaria diagnosis using mobile phones. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on p 2405–2408. IEEE
Damahe LB, Krishna R, Janwe N (2011) Segmentation based approach to detect parasites and RBCs in blood cell images. Int J Comput Sci Appl 4:71–81
Das DK et al (2013) Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45:97–106
Devi RR et al (2011) Computerized shape analysis of erythrocytes and their formed aggregates in patients infected with P.Vivax Malaria. Advanced Computing: An International Journal (ACIJ) 2
Di Ruberto C et al (2002) Analysis of infected blood cell images using morphological operators. Image and vision computing 20(2):133–146
Di Rubeto C et al (2000) Segmentation of blood images using morphological operators. in Pattern Recognition. Proceedings. 15th International Conference on. IEEE
Díaz G, González FA (2009) E Romero, A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J Biomed Inform 42(2):296–307
Gatc J et al (2013) Plasmodium parasite detection on Red Blood Cell image for the diagnosis of malaria using double thresholding. In Advanced Computer Science and Information Systems (ICACSIS), 2013 International conference on. IEEE
Ghosh M et al (2011) Plasmodium vivax segmentation using modified fuzzy divergence. In Image Information Processing (ICIIP), 2011 International conference on. IEEE
Ghosh S, Ghosh A, Kundu S (2014) Estimating malaria parasitaemia in images of thin smear of human blood. CSI transactions on ICT 2(1):43–48
Gitonga L et al (2014) Determination of plasmodium parasite life stages and species in images of thin blood smears using artificial neural network. Open J Clin Diag 4(02):78
Gual-Arnau X, Herold-García S, Simó A (2015) Erythrocyte shape classification using integral-geometry-based methods. Med Biol Eng Comput 53(7):623–633
Halim S et al (2006) Estimating malaria parasitaemia from blood smear images. In 2006 9th international conference on control, automation, robotics and vision. IEEE
Hanif N, Mashor M, Mohamed Z (2011) Image enhancement and segmentation using dark stretching technique for Plasmodium Falciparum for thick blood smear. In Signal Processing and its Applications (CSPA), 2011 I.E. 7th international colloquium on. IEEE
Heijmans HJ (1999) Connected morphological operators for binary images. Comput Vis Image Underst 73(1):99–120
Hung Y-W et al (2015) Parasite and infected-erythrocyte image segmentation in stained blood smears. J Med Biol Eng 35(6):803–815
Kaewkamnerd S et al (2012) An automatic device for detection and classification of malaria parasite species in thick blood film. Bmc Bioinformatics, 13(17), S18
Kareem S, Kale I, Morling RC (2012a) Automated P. falciparum detection system for post-treatment malaria diagnosis using modified annular ring ratio method. In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on p 432–436. IEEE
Kareem S, Kale I, Morling RS (2012b) Automated malaria parasite detection in thin blood films:-A hybrid illumination and color constancy insensitive, morphological approach. In Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on p 240–243. IEEE.
Kareem S, Morling RS, Kale I (2011) A novel method to count the red blood cells in thin blood films. In 2011 I.E. international symposium of circuits and systems (ISCAS). IEEE
Khan MI et al (2011) Content based image retrieval approaches for detection of malarial parasite in blood images. Intern J Biom Bioinform (IJBB) 5(2):97
Khan NA et al (2014) Unsupervised identification of malaria parasites using computer vision. In Computer Science and Software Engineering (JCSSE), 2014 11th international joint conference on. IEEE
Khatri K et al (2013) Image processing approach for malaria parasite identification. In International Journal of Computer Applications, National Conference on Growth of Technologies in Electronics, Telecom and Computers-India's Perception. Citeseer
Khattak AA et al (2013) Prevalence and distribution of human plasmodium infection in Pakistan. Malar J 12(1):297
Komagal E, Kumar KS, Vigneswaran A (2013) Recognition and classification of malaria plasmodium diagnosis. ESRSA Publications, In International Journal of Engineering Research and Technology
Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques
Kumar A et al (2012) Enhanced identification of malarial infected objects using otsu algorithm from thin smear digital images. International Journal of Latest Research in Science and Technology ISSN (Online) 2278–5299
Kumarasamy SK, Ong S, Tan KS (2011) Robust contour reconstruction of red blood cells and parasites in the automated identification of the stages of malarial infection. Machine Vision and Applications 22(3):461–469
Le M-T et al (2008) A novel semi-automatic image processing approach to determine plasmodium falciparum parasitemia in Giemsa-stained thin blood smears. BMC Cell Biol 9(1):15
Lee H, Chen Y-PP (2014) Cell morphology based classification for red cells in blood smear images. Pattern Recogn Lett 49:155–161
Linder N et al (2014) A malaria diagnostic tool based on computer vision screening and visualization of plasmodium falciparum candidate areas in digitized blood smears. PLoS One 9(8):e104855
Maiseli B et al (2014) An automatic and cost-effective parasitemia identification framework for low-end microscopy imaging devices. In Mechatronics and Control (ICMC), 2014 International conference on p 2048–2053. IEEE
Makkapati VV, Rao RM (2009) Segmentation of malaria parasites in peripheral blood Smear images. In 2009 I.E. international conference on acoustics, speech and signal processing. IEEE
Malaria disease concepts. Sept 2015. Available from: http://www.cdc.gov/malaria/
Malaria. (n.d.). Retrieved September, 2015, from: http://www.who.int/malaria/en/
Malihi L, Ansari-Asl K, Behbahani A (2013) Malaria parasite detection in giemsa-stained blood cell images. In Machine Vision and Image Processing (MVIP), 2013 8th Iranian Conference on IEEE
Mandal S et al (2010) Segmentation of blood smear images using normalized cuts for detection of malarial parasites. In 2010 Annual IEEE India conference (INDICON). IEEE
Mas D et al (2015) Novel image processing approach to detect malaria. Opt Commun 350:13–18
Mushabe MC, Dendere R, Douglas TS (2013) Automated detection of malaria in Giemsa-stained thin blood smears. In 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE
Nixon, M., Feature extraction & image processing. 2008: Academic press, Cambridge.
Nugroho AS et al (2014) Two-stage feature extraction to identify Plasmodium ovale from thin blood smear microphotograph. In Data and Software Engineering (ICODSE), 2014 International conference on. IEEE
Okwa, O.O. (2012). Malaria parasites. InTech. doi: 10.5771/1477
Organization WH (2009) Malaria microscopy quality assurance manual. World Health Organization
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27
Prasad K et al (2012) Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 25(4):542–549
Premaratne SP et al (2003) A neural network architecture for automated recognition of intracellular malaria parasites in stained blood films. CJ Janse and PH Van Vianen,. Flow cytometry in malaria detection. Methods Cell. Biol 42.
Purwar Y et al (2011) Automated and unsupervised detection of malarial parasites in microscopic images. Malar J 10(1):1
Rakshit P, Bhowmik K (2013) Detection of presence of parasites in human RBC in case of diagnosing malaria using image processing. In Image Information Processing (ICIIP), 2013 I.E. second international conference on. IEEE
Raviraja S, Bajpai G, Sharma SK (2007) Analysis of detecting the Malarial parasite infected blood images using statistical based approach. In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. Springer
Rosado L et al (2016) Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Com Sci 90:138–144
Ross NE et al (2006) Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput 44(5):427–436
Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, Mehmood I (2016) Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE. DOI: 10.1109/ACCESS.2016.2636218
Savkare S, Narote S (2012) Automatic system for classification of erythrocytes infected with malaria and identification of parasite's life stage. Procedia Technol 6:405–410
Savkare S, Narote S (2015) Automated system for malaria parasite identification. in Communication, Information & Computing Technology (ICCICT), 2015 International Conference on IEEE
Sheeba F et al (2013) Detection of plasmodium falciparum in peripheral blood smear images. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Springer
Annaldas MS, Shirgan SS & Marathe VR (2014) Enhanced identification of malaria parasite using different classification algorithms in thick film blood images. Int J Res Advent Technol 2(10)
Singh A, Shibu S, Dubey S (2014) Recent image enhancement techniques: a review. Intern J Eng Advanc Technol 4(1):40–45
Sio SW et al (2007) MalariaCount: an image analysis-based program for the accurate determination of parasitemia. J Microbiol Methods 68(1):11–18
Somasekar J, Reddy BE (2015) Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging. Comput Electr Eng 45:336–351
Somasekar, J., et al., An image processing approach for accurate determination of parasitemia in peripheral blood smear images. International Journal of Computer Applications 23–28
Soni J (2011) Advanced image analysis based system for automatic detection of malarial parasite in blood images using SUSAN approach. Int J Eng Sci Technol 3(6):5260–5274
Suradkar PT (2013) Detection of malarial parasite in blood using image processing. Int J Eng Innov Technol (IJEIT) 2(10)
Suryawanshi MS, Dixit V (2013) Improved technique for detection of malaria parasites within the blood cell images. Int J Sci Eng Res 4:373–375
Suwalka I et al (2012) Identify malaria parasite using pattern recognition technique. In Computing, Communication and Applications (ICCCA), 2012 International Conference on p. 1–4 IEEE
Tek FB (2007) Computerised diagnosis of malaria. University of Westminster
Tek FB, Dempster AG, Kale I (2006) Malaria parasite detection in peripheral blood images. In BMVC
Tek FB, Dempster AG, Kale I (2009) Computer vision for microscopy diagnosis of malaria. Malaria Journal 8(1):153
Tek FB, Dempster AG, Kale İ (2010) Parasite detection and identification for automated thin blood film malaria diagnosis. Comput Vis Image Underst 114(1):21–32
Toha SF, Ngah UK (2007) Computer aided medical diagnosis for the identification of malaria parasites. In 2007 International conference on signal processing, communications and networking. IEEE
Tsai M-H et al (2015) Blood smear image based malaria parasite and infected-erythrocyte detection and segmentation. Journal of medical systems 39(10):118
Warhurst, D.C. and J.E. Williams, ACP Broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J Clin Pathol 1996 49(7): p. 533–538.
What is Malaria? 2015. Available from: http://www.healthline.com/health/malaria
Widodo S (2014) Texture analysis to detect malaria tropica in blood smears image using support vector machine
World Malaria Report (2014) World Health Organization
Yunda L, Alarcón A, Millán J (2012) Automated image analysis method for p-vivax malaria parasite detection in thick film blood images. Sistemas y Telemática 10(20):9–25
Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19
Zou L-H et al (2010) Malaria cell counting diagnosis within large field of view. In Digital Image Computing: In Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on p. 172–177 IEEE.
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919551).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jan, Z., Khan, A., Sajjad, M. et al. A review on automated diagnosis of malaria parasite in microscopic blood smears images. Multimed Tools Appl 77, 9801–9826 (2018). https://doi.org/10.1007/s11042-017-4495-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4495-2