Skip to main content
Log in

Light source point cluster selection-based atmospheric light estimation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The atmospheric light value is a critical parameter in defogging algorithms that are based on atmospheric scattering models. Any error in the atmospheric light value will impact directly on the accuracy of scattering computation and thus cause chromatic distortions in the restored images. To address this problem, this paper proposes a method that relies on clustering statistics to estimate the atmospheric light value. It starts by selecting in the original image some potential atmospheric light source points, which are grouped into point clusters using a clustering technique. From these clusters, several clusters containing candidate atmospheric light source points are selected; the points are then analyzed statistically, and the cluster containing the most candidate points is used for estimating the atmospheric light value. The mean brightness vector of the candidate atmospheric light points in the chosen point cluster is used as the estimate of the atmospheric light value, and their geometric center in the image is accepted as the location of atmospheric light. The experimental results suggest that this statistical clustering method produces more accurate atmosphere brightness vectors and light source locations. This accuracy translates to, from a subjective perspective, both a more natural defogging effect and improvements in various objective image quality indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agaian SS, Panetta K, Grigoryan AM (2000) A new measure of image enhancement. In: IASTED international conference on signal processing & communication. Citeseer, pp 19–22. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.4021

  2. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901. doi:10.1109/tip.2015.2456502

    Article  MathSciNet  MATH  Google Scholar 

  3. Cozman F, Krotkov E (1997) Depth from scattering. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 801–806. doi:10.1109/cvpr.1997.609419

  4. Di W, Qing-Song Z (2015) The latest research progress of image dehazing. Acta Automat Sin 41(2):221–239

    Google Scholar 

  5. Hautiere N, Tarel JP, Aubert D, Dumont E et al (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol J 27(2):87–95. doi:10.5566/ias.v27.p87-95

    Article  MathSciNet  MATH  Google Scholar 

  6. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353. doi:10.1109/cvprw.2009.5206515

    Article  Google Scholar 

  7. Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242. doi:10.1109/tpami.2007.1177

    Article  Google Scholar 

  8. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254. doi:10.1023/a:1016328200723

    Article  MATH  Google Scholar 

  9. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724. doi:10.1109/tpami.2003.1201821

    Article  Google Scholar 

  10. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE workshop on color and photometric methods in computer vision, France, vol 1, p 6

  11. Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2. IEEE, pp 820–827. doi:10.1109/iccv.1999.790306

  12. Oakley JP, Satherley BL (1998) Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans Image Process 7(2):167–179. doi:10.1109/83.660994

    Article  Google Scholar 

  13. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1. IEEE, pp I–325. doi:10.1109/cvpr.2001.990493

  14. Tang Z, Zhang X, Li X, Zhang S (2016) Robust image hashing with ring partition and invariant vector distance. IEEE Trans Inf Forensics Secur 11(1):200–214. doi:10.1109/tifs.2015.2485163

    Article  Google Scholar 

  15. Tang Z, Zhang X, Zhang S (2014) Robust perceptual image hashing based on ring partition and nmf. IEEE Trans Knowl Data Eng 26(3):711–724. doi:10.1109/tkde.2013.45

    Article  Google Scholar 

  16. Wang YK, Fan CT (2014) Single image defogging by multiscale depth fusion. IEEE Trans Image Process 23(11):4826–4837. doi:10.1109/tip.2014.2358076

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang L, Li X, Hu B, Ren X (2015) Research on fast smog free algorithm on single image. In: 2015 first international conference on computational intelligence theory, systems and applications. CCITSA. IEEE, pp 177–182. doi:10.1109/ccitsa.2015.55

  18. Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intel Syst Technol (TIST) 8(3):43

    Google Scholar 

  19. Zhao H, Xiao C, Yu J, Xu X (2015) Single image fog removal based on local extrema. IEEE/CAA J Automat Sin 2(2):158–165. doi:10.1109/jas.2015.7081655

    Article  MathSciNet  Google Scholar 

  20. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533. doi:10.1109/tip.2015.2446191

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750. doi:10.1109/tip.2014.2332764

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461. doi:10.1109/tcyb.2015.2403356

    Article  Google Scholar 

  23. Zhu X, Li X, Zhang S, Ju C, Wu X (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. In: IEEE transactions on neural networks and learning systems. IEEE. doi:10.1109/tnnls.2016.2521602

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Hou, X. Light source point cluster selection-based atmospheric light estimation. Multimed Tools Appl 77, 2947–2958 (2018). https://doi.org/10.1007/s11042-017-4547-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4547-7

Keywords