Abstract
The atmospheric light value is a critical parameter in defogging algorithms that are based on atmospheric scattering models. Any error in the atmospheric light value will impact directly on the accuracy of scattering computation and thus cause chromatic distortions in the restored images. To address this problem, this paper proposes a method that relies on clustering statistics to estimate the atmospheric light value. It starts by selecting in the original image some potential atmospheric light source points, which are grouped into point clusters using a clustering technique. From these clusters, several clusters containing candidate atmospheric light source points are selected; the points are then analyzed statistically, and the cluster containing the most candidate points is used for estimating the atmospheric light value. The mean brightness vector of the candidate atmospheric light points in the chosen point cluster is used as the estimate of the atmospheric light value, and their geometric center in the image is accepted as the location of atmospheric light. The experimental results suggest that this statistical clustering method produces more accurate atmosphere brightness vectors and light source locations. This accuracy translates to, from a subjective perspective, both a more natural defogging effect and improvements in various objective image quality indicators.



Similar content being viewed by others
References
Agaian SS, Panetta K, Grigoryan AM (2000) A new measure of image enhancement. In: IASTED international conference on signal processing & communication. Citeseer, pp 19–22. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.4021
Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901. doi:10.1109/tip.2015.2456502
Cozman F, Krotkov E (1997) Depth from scattering. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 801–806. doi:10.1109/cvpr.1997.609419
Di W, Qing-Song Z (2015) The latest research progress of image dehazing. Acta Automat Sin 41(2):221–239
Hautiere N, Tarel JP, Aubert D, Dumont E et al (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol J 27(2):87–95. doi:10.5566/ias.v27.p87-95
He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353. doi:10.1109/cvprw.2009.5206515
Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242. doi:10.1109/tpami.2007.1177
Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254. doi:10.1023/a:1016328200723
Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724. doi:10.1109/tpami.2003.1201821
Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE workshop on color and photometric methods in computer vision, France, vol 1, p 6
Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2. IEEE, pp 820–827. doi:10.1109/iccv.1999.790306
Oakley JP, Satherley BL (1998) Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans Image Process 7(2):167–179. doi:10.1109/83.660994
Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1. IEEE, pp I–325. doi:10.1109/cvpr.2001.990493
Tang Z, Zhang X, Li X, Zhang S (2016) Robust image hashing with ring partition and invariant vector distance. IEEE Trans Inf Forensics Secur 11(1):200–214. doi:10.1109/tifs.2015.2485163
Tang Z, Zhang X, Zhang S (2014) Robust perceptual image hashing based on ring partition and nmf. IEEE Trans Knowl Data Eng 26(3):711–724. doi:10.1109/tkde.2013.45
Wang YK, Fan CT (2014) Single image defogging by multiscale depth fusion. IEEE Trans Image Process 23(11):4826–4837. doi:10.1109/tip.2014.2358076
Zhang L, Li X, Hu B, Ren X (2015) Research on fast smog free algorithm on single image. In: 2015 first international conference on computational intelligence theory, systems and applications. CCITSA. IEEE, pp 177–182. doi:10.1109/ccitsa.2015.55
Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intel Syst Technol (TIST) 8(3):43
Zhao H, Xiao C, Yu J, Xu X (2015) Single image fog removal based on local extrema. IEEE/CAA J Automat Sin 2(2):158–165. doi:10.1109/jas.2015.7081655
Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533. doi:10.1109/tip.2015.2446191
Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750. doi:10.1109/tip.2014.2332764
Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461. doi:10.1109/tcyb.2015.2403356
Zhu X, Li X, Zhang S, Ju C, Wu X (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. In: IEEE transactions on neural networks and learning systems. IEEE. doi:10.1109/tnnls.2016.2521602
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, W., Hou, X. Light source point cluster selection-based atmospheric light estimation. Multimed Tools Appl 77, 2947–2958 (2018). https://doi.org/10.1007/s11042-017-4547-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4547-7