Skip to main content
Log in

A MRI image segmentation method based on medical semaphore calculating in medical multimedia big data environment

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we calculate global signal distribution of medical images, including intensity distribution and direction of the signal. We can get a global signal vector diagram from medical image and correct intensity and direction of medical image signal to global uniformity. Our method can precisely correct the intensity inhomogeneity caused by machinery and generate more accurate edge segmentation results and region segmentation results. Our method uses magnetic flux and semaphore to calculate the global signal distribution and intensity inhomogeneity of medical images. We propose a correction and segmentation method for medical images based on the combination of semaphore theory and level set theory. We test our method on a public data set and compare our results with the best results of others methods at present. The experiments data show that our results are more precise and that our method is more efficient than the current state-of-the-art methods. In addition, our method can be used for various types of image correction and segmentation. Our method is more suitable for segmentation of medical images with mechanical errors and more suitable for correction of medical images before using other methods for segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Axel L, Costantini J, Listerud J (2011) Intensity correction in surface-coil MR imaging. Am J Radiol 148(2):418–420

    Google Scholar 

  2. Caselles V, Kimmel R, Sapiro G (2013a) Geodesic active contours. In: Proc. IEEE Intl. Conf. On comp. Vis. Boston, USA, pp 694–699

    Google Scholar 

  3. Caselles V, Kimmel R, Sapiro G (2013b) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  4. Caselles V, Catte F, Coll T, Dibos F (2014) A geometric model for active contours in image processing. Numer Math 66:1–31

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan TF, Vese LA (2011) A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE workshop on 14 variational and level set methods. Vancouver, CA, pp 161–168

    Google Scholar 

  6. Chan T, Vese L (2014) Active contours without edges. IEEE Trans Imag Proc 10:266–277

    Article  MATH  Google Scholar 

  7. Collins DL, Zijdenbos AP, Kollokian VV (2007) Design and construction of a realistic digital brain phantom[J]. IEEE Trans Med Imaging 17(3):463–468

    Article  Google Scholar 

  8. Dambreville S, Rathi Y, Tannenbaum A (2011) A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans Pattern Anal Mach Intell 30(8):1385–1399

    Article  Google Scholar 

  9. Datta S, Sajja BR, He R (2007) Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis[J]. J Magn Reson Imaging 25(5):932–937

    Article  Google Scholar 

  10. Dawant B, Zijdenbos A, Margolin R (2008) Correction of intensity variations in MR images for computer-aided tissues classification. IEEE Trans Med Imaging 12(4):770–781

    Article  Google Scholar 

  11. Gomes J, Faugeras O (2010) Reconciling distance functions and level sets. J Vis Commun Image Represent 11(2):209–223

    Article  Google Scholar 

  12. Guillemaud R, Brady J (2009) Estimating the biasfield of MR images. IEEE Trans Med Imaging 16(3):238–251

    Article  Google Scholar 

  13. Johnston B, Atkins MS, Mackiewich B, Anderson M (2013) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 15(2):154–169

    Article  Google Scholar 

  14. Kass M, Witkin A, Terzopoulos D (2015) Snakes: active contour models. Int J of Computer Vision 1(4):321–331

    Article  Google Scholar 

  15. Kim J, Etin MC, Willsky A (2007) Non-parametric shape priors for active contour-based image segmentation. Signal Process 87(12):3021–3044

  16. Kimmel R, Amir A, Bruckstein A (2011) Finding shortest paths on surfaces using level set propagation. IEEE Trans Pattern Anal Mach Intell 17(6):635–640

    Article  Google Scholar 

  17. Leventon M, Grimson W, Faugeras O (2014) Statistical shape influence in geodesic active contours. In Proc, IEEE CVPR

    Google Scholar 

  18. Li C, Xu C, Gui C (2005) Level set evolution without re-initialization: a new variational formulation[C]. CVPR 1:430–436

    Google Scholar 

  19. Li C, Huang R, Ding Z, Gatenby C, Metaxas D, Gore J (2008) A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity. Proc. Medical Image Computing and Computer Aided Intervention (MICCAI), Vol. LNCS 5242(Part II): 1083–91

  20. Li C, Xu C, Anderson AW, Gore JC (2009) MRI tissue classification and bias field estimation based on coherent local intensity clustering: A Unified Energy Minimization Framework, Information Processing in Medical Imaging (IPMI) 2009:288–299

  21. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentatio. IEEE Trans Image Process 19(12):3243–3254

  22. Li C, Huang R, Ding Z, Chris Gatenby J, Dimitris Metaxas N (2011) A level set method for image segmentation in the presence of intensity Inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

  23. Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magnetic Resonance Imaging, vol 32(7):913–923

    Article  Google Scholar 

  24. Likar B, Viergever MA, Pernus F (2008) Restrospective correction of MR intensity inhomogeneity by information minimization[J]. IEEE Trans. Medical Imaging 20(12):1398–1410

    Article  Google Scholar 

  25. Malladi R, Sethian JA, Vemuri BC (2006) Shape modeling with front propagation: a level set approach. IEEE T-PAMI 17:158–175

    Article  Google Scholar 

  26. Malladi R, Sethian JA, Vemuri BC (2007) A topology independent shape modeling scheme. In SPIE Conf. On geometric methods in comp. Vision II 2031:246–258

    Google Scholar 

  27. Malladi R, Sethian JA, Vemuri BC (2013) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  28. McVeigh ER, Bronskil MJ, Henkelman RM (2014) Phase and sensitivity of receiver coils in magnetic resonance imaging. Med Phys 13(6):806–814

    Article  Google Scholar 

  29. Mumford D, Shah J (2013) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

  30. Mumford D, Shah J (2014) Optimal approximations by piecewise smooth functions and associated variational problems. Comm Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  31. Narayana PA, Brey WW, Kulkarni MV, Sivenpiper CL (2012) Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn Reson Imaging 6(3):271–274

    Article  Google Scholar 

  32. Osher S, Sethian J (2014) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  33. Paragios N, Deriche R (2012) Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis 46(3):223–247

    Article  MATH  Google Scholar 

  34. Pham D, Prince J (2007) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752

    Article  Google Scholar 

  35. Richard VG, Isambert SA (2012) A pre-clinical assessment of an atlas based automatic segmentation tool for the head and neck[J]. Radiother Oncol 93(3):474–482

    Google Scholar 

  36. Ronfard R (2014) Region-based strategies for active contour models. Int. J Comput Vis 13(2):229–251

    Article  Google Scholar 

  37. Samson C, Blanc-Feraud L, Aubert G, Zerubia J (2000) A variational model for image classification and restoration. IEEE Trans Pattern Anal Mach Intell 22(5):460–472

  38. Shattuck DW, Sandor-Leahy SR, Schaper KA (2011) Magnetic resonance image tissue classification using a partial volume model[J]. NeuroImage 13(5):856–876

    Article  Google Scholar 

  39. Sijbers J, den Dekker AJ (2014) Maximum likelihood estimation of signal amplitude and noise variance from MR data[J]. Magn Reson Med 51(3):586–594

    Article  Google Scholar 

  40. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

  41. Tsai A, Yezzi AJ, Willsky AS (2011a) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magni cation. IEEE Trans Image Process 10(8):1169–1186

    Article  MATH  Google Scholar 

  42. Tsai A, Yezzi A, Willsky AS (2011b) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process 10(8):1169–1186

    Article  MATH  Google Scholar 

  43. Vasilevskiy A, Siddiqi K (2012) Flux-maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24(12):1565–1578

    Article  MATH  Google Scholar 

  44. Vese L, Chan T (2012) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  45. Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421

    Article  Google Scholar 

  46. Weber M, Blake A, Cipolla R (2004) Sparse finite elements for geodesic contours with level-sets. In Proc. Eur. Conf. Comput. Vis, pp 391–404

  47. Zhang Y, Brady M, Smith S (2011) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm[J]. IEEE Trans Medical Imaging 20(1):45–57

    Article  Google Scholar 

  48. Zhu SC, Yuille A (2007) Region competition: unifying snakes. Region Growing, and Bayes/MDL for Multiband Image Segmentation IEEE T-PAMI 18:884–900

    Google Scholar 

Download references

Acknowledgements

We sincerely thank each one of the reviewer and editors’ work to the paper. This paper is supported by National Natural Science Foundation Projects of China (Grant No. 61003016, 61300007, 61305054), Ministry of science and technology basic scientific research business expenses focused on scientific and technological innovation projects of China (Grant No. YWF-14-JSJXY-007), Central University basic scientific research business expenses special funds of China (Grant No. YWF-15-GJSYS-106), Free Discovery Funds of State Key Laboratory of Software Development Environment of China (Grant No. ZX2015ZX-09, SKLSDE-2014ZX-06, SKLSDE-2012ZX-28, SKLSDE-2015ZX-09), Open funds of State Key Laboratory of Software Development Environment of China (Grant No. SKLSDE-2013ZX-11).

Authors’ contributions

Three authors have contributed equally to the text while Ronghe Wang have implemented the texture descriptors and performed most of the tests. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Lv.

Ethics declarations

Competing interests

The authors do not have any competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Lv, J. & Ma, S. A MRI image segmentation method based on medical semaphore calculating in medical multimedia big data environment. Multimed Tools Appl 77, 9995–10015 (2018). https://doi.org/10.1007/s11042-017-4591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4591-3

Keywords

Navigation