Skip to main content

Advertisement

Log in

Hierarchical topology based hand pose estimation from a single depth image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Hand pose estimation benefits large human computer interaction applications. The hand pose has high dimensions of freedom (dof) for joints, and various hand poses are flexible. Hand pose estimation is still a challenge problem. Since hand joints on the hand skeleton topology model have strict relationships between each other, we propose a hierarchical topology based approach to estimate 3D hand poses. First, we determine palm positions and palm orientations by detecting hand fingertips and calculating their directions in depth images. It is the global topology of hand poses. Moreover, we define connection relationships of finger joints as the local topology of hand model. Based on hierarchical topology, we extract angle features to describe hand poses, and adopt the regression forest algorithm to estimate 3D coordinates of hand joints. We further use freedom forrest algorithm to refine ambiguous poses in estimation to solve error accumulation problem. The hierarchical topology based approach ensures estimated hand poses in a reasonable topology, and improves estimation accuracy. We evaluate our approach on two public databases, and experiments illustrate its efficiency. Compared with state-of-the-art approaches, our approach improves estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albrecht I, Haber J, Seidel H (2003) Construction and animation of anatomically based human hand models ACM SIGGRAPH, pp 98–109

    Google Scholar 

  2. Braort A, Gherbi R, Gibet S, Richardson J, Teil D (2001) Gesture-based communication in human-computer interaction Gesture workshop

    Google Scholar 

  3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  4. Brown JA, Capson DW (2012) A framework for 3d model-based visual tracking using a gpu-accelerated particle filter. IEEE Trans Vis Comput Graph 18(1):68–80

    Article  Google Scholar 

  5. Cheng H, Yang L, Liu Z (2016) A survey on 3d hand gesture recognition. IEEE Trans Circuits Syst Video Technol 26(9):1659–1673

    Article  Google Scholar 

  6. Chi X, Li C (2013) Efficient hand pose estimation from a single depth image ICCV

    Google Scholar 

  7. Erola A, Bebisa G, Nicolescua M, Boyleb RD, Twomblyb X (2007) Vision-based hand pose estimation: a review. Comput Vis Image Underst 108(1-2):52–73

    Article  Google Scholar 

  8. Ge L, Liang H, Yuan J, Thalmann D (2016) Robust 3d hand pose estimation in single depth images: from single-view cnn to multi-view cnns CVPR

    Google Scholar 

  9. Jonathan T, Murphy S, Yann L, Ken P (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans Graph:1935–1946

  10. Keskin C, Kiac F, Kara YE, Akarun L (2011) Real time hand pose estimation using depth sensors ICCV Workshops

    Google Scholar 

  11. Keskin C, Kirac F, Kara YE (2013) Real time hand pose estimation using depth sensors. Consumer Depth Cameras for Computer Vision, pp 119–137

  12. Keskin C, Kirac F, Kara YE, Akarun L (2012) Hand pose estimation and hand shape classification using multi-layered randomized decision forests ECCV

    Google Scholar 

  13. Liang H, Yuan J, Thalmann D, Zhang Z (2013) Model-based hand pose estimation via spatial-temporal hand parsing and 3d fingertip localization. Vis Comput 29:837–848

    Article  Google Scholar 

  14. Lien C (2005) A scalable model-based hand posture analysis system. Mach Vis Appl 16(3):157–169

    Article  Google Scholar 

  15. Luo Y, Yang Y, Shen F, Huang Z, Zhou P, Shen HT (2017) Robust discrete code modeling for supervised hashing. Pat Recogn. doi:10.1016/j.patcog.2017.02.034

  16. Lu S, Metaxas D, Samaras D, Oliensis J (2003) Using multiple cues for hand tracking and model refinement CVPR

    Google Scholar 

  17. Nakagawa Y, Kihara K, Lu Hea (2016) Super resolving of the depth map for 3d reconstruction of underwater terrain using kinect ICPADS, pp 1237–1240

    Google Scholar 

  18. Oberweger M, Wohlhart P, Lepetit V (2015) Hands deep in deep learning for hand pose estimation Computer Science

  19. Oikonomidis I, Kyriazis N, Argyros A (2011) Efficient model-based 3d tracking of hand articulations using kinect BMVC

    Google Scholar 

  20. Oikonomidis I, Lourakis M, Argyros AA (2014) Evolutionary quasi-random search for hand articulations tracking CVPR

    Google Scholar 

  21. Qian C, Sun X, Wei Y, Tang X (2014) Realtime and robust hand tracking from depth CVPR

    Google Scholar 

  22. Rautaray SS, Agrawal A (2015) Vision based hand gesture recognition for human computer interaction: a survey. Artif Intell Rev 43(1):1–54

    Article  Google Scholar 

  23. Sato Y, Saito M, Koik H (2001) Real-time input of 3d pose and gestures of a users hand and its applications for hci IEEE Virtual reality conference

    Google Scholar 

  24. Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50

    Article  Google Scholar 

  25. Sharp T, Keskin C, Robertson D, Taylor J, Shotton J, Kim D, Rhemann C, Leichter I, Vinnikov A, Wei Y (2015) Accurate, robust, and flexible real-time hand tracking ACM Conference on human factors in computing systems, pp 3633–3642

    Google Scholar 

  26. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2013) Real-time human pose recognition in parts from single depth images. Machine Learning for Computer Vision 411:119–135

    Article  Google Scholar 

  27. Sridhar S, Rhodin H, Seidel HP (2014) Real-time hand tracking using a sum of anisotropic gaussians model IEEE International conference on 3d vision

    Google Scholar 

  28. Srinath S, Antti O, Christian T (2013) Interactive markerless articulated hand motion tracking using rgb and depth data ICCV

    Google Scholar 

  29. Srinath S, Franziska M, Antti O, Christian T (2015) Fast and robust hand tracking using detection-guided optimization CVPR

    Google Scholar 

  30. Suarez J, Murphy R (2012) Hand gesture recognition with depth images: a review. IEEE international Symposium on Robot and human Interactive Communication, pp 411–417

  31. Sudderth A, Mandel M, Freeman W (2004) Visual hand tracking using nonparametric belief propagation CVPRW

    Google Scholar 

  32. Sun X, Wei Y, Liang S, Tang X, Sun J (2015) Cascaded hand pose regression CVPR

    Google Scholar 

  33. Supancic J, Rogez G, Yang Y, Ramanan D, Shotton J (2015) Depth-based hand pose estimation: data, methods, and challenges ICCV

    Google Scholar 

  34. Tang D, Chang H, Tejani A, Kim T (2014) Latent regression forest: Structured estimation of 3d articulated hand posture CVPR

    Google Scholar 

  35. Tang D, Jonathan T, Kohli P, Keskin C (2015) Opening the black box: Hierarchical sampling optimization for estimating human hand pose ICCV

    Google Scholar 

  36. Yang Y, Ma Z, Yang Y, Nie F, Shen HT (2015) Multitask spectral clustering by exploring intertask correlation. IEEE Trans Cybern 45(5):1083–1094

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of China (NSFC) under grant No. 61305043 and grant No. 61673088. It is also supported by the Natural Science Foundation of China (NSFC) under grant No.61572108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Li, H., Yang, Y. et al. Hierarchical topology based hand pose estimation from a single depth image. Multimed Tools Appl 77, 10553–10568 (2018). https://doi.org/10.1007/s11042-017-4651-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4651-8

Keywords

Navigation