Abstract
In this paper, a numerical study devoted to evaluate the application of a microwave imaging method for brain stroke detection is described. First of all, suitable operating conditions for the imaging system are defined by solving the forward electromagnetic scattering problem with respect to simplified configurations and analyzing the interactions between an illuminating electromagnetic wave at microwave frequencies and the biological tissues inside the head. Then, preliminary inversion results are obtained by applying an imaging procedure based on an iterative Gauss-Newton scheme to a realistic model of the human head. The proposed imaging algorithm is able to deal with the nonlinear and ill-posed problem associated to the integral equations describing the inverse scattering problem. The aim of the inversion procedure is related to the determination of the presence of a hemorrhagic brain stroke by retrieving the distributions of the dielectric parameters of the human tissues inside a slice of the head model.















Similar content being viewed by others
References
Barbeito A, Painho M, Cabral P, O’Neill JG (2017) Beyond Digital human body atlases: segmenting an integrated 3D topological model of the human body. Int J E-Health Med Commun 8:19–36. doi:10.4018/IJEHMC.2017010102
Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. IOP Publishing, Bristol
Bialkowski K, Ireland D, Abbosh A (2013) Microwave imaging for brain stroke detection using born iterative method. IET Microw Antennas Propag 7:909–915. doi:10.1049/iet-map.2013.0054
Bialkowski KS, Abbosh AM, Mohammed BJ (2015) Radar-based time-domain head imaging using database of effective dielectric constant. Electron Lett 51:1574–1576. doi:10.1049/el.2015.1376
Bozza G, Estatico C, Pastorino M, Randazzo A (2007) Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique. Mater Eval 65:917–922
Bozza G, Estatico C, Pastorino M, Randazzo A (2007) Application of an inexact-Newton method within the second-order born approximation to buried objects. IEEE Geosci Remote Sens Lett 4:51–55. doi:10.1109/LGRS.2006.885864
Bozza G, Estatico C, Massa A et al (2007) Short-range image-based method for the inspection of strong scatterers using microwaves. IEEE Trans Instrum Meas 56:1181–1188. doi:10.1109/TIM.2007.900127
Burfeindt MJ, Shea JD, Van Veen BD, Hagness SC (2014) Beamforming-enhanced inverse scattering for microwave breast imaging. IEEE Trans Antennas Propag 62:5126–5132. doi:10.1109/TAP.2014.2344096
Byrne D, Craddock IJ (2015) Time-domain wideband adaptive Beamforming for radar breast imaging. IEEE Trans Antennas Propag 63:1725–1735. doi:10.1109/TAP.2015.2398125
Caorsi S, Massa A, Pastorino M, Randazzo A (2003) Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm. IEEE Trans Geosci Remote Sens 41:2745–2753. doi:10.1109/TGRS.2003.815676
Caorsi S, Massa A, Pastorino M, Randazzo A, Rosani A (2004) A reconstruction procedure for microwave nondestructive evaluation based on a numerically computed Green’s function. IEEE Trans Instrum Meas 53(4):987–992. doi:10.1109/TIM.2004.831446
Catapano I, Randazzo A, Slob E, Solimene R (2015) GPR imaging via qualitative and quantitative approaches. In: Benedetto A, Pajewski L (eds) Civ. Eng. Appl. Ground Penetrating radar. Springer, Cham, pp 239–280
Chew WC (1995) Waves and fields in inhomogeneous media. IEEE Press, New York
Donnell KM, Zoughi R (2012) Detection of corrosion in reinforcing steel bars using microwave dual-loaded differential modulated Scatterer technique. IEEE Trans Instrum Meas 61:1–16. doi:10.1109/TIM.2012.2200822
Estatico C, Pastorino M, Randazzo A (2012) A novel microwave imaging approach based on regularization in Lp Banach spaces. IEEE Trans Antennas Propag 60:3373–3381. doi:10.1109/TAP.2012.2196925
Estatico C, Fedeli A, Pastorino M, Randazzo A (2015) A multifrequency inexact-Newton method in Lp Banach spaces for buried objects detection. IEEE Trans Antennas Propag 63:4198–4204. doi:10.1109/TAP.2015.2446995
Fear EC, Bourqui J, Curtis C et al (2013) Microwave breast imaging with a Monostatic radar-based system: a study of application to patients. IEEE Trans Microw Theory Tech 61:2119–2128. doi:10.1109/TMTT.2013.2255884
Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269. doi:10.1088/0031-9155/41/11/002
Guo L, Abbosh AM (2015) Microwave imaging of Nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning. IEEE Trans Antennas Propag 63:4877–4888. doi:10.1109/TAP.2015.2473000
Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with Alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329. doi:10.1056/NEJMoa0804656
Hossain MD, Mohan AS, Abedin MJ (2013) Beamspace time-reversal microwave imaging for breast cancer detection. IEEE Antennas Wirel Propag Lett 12:241–244. doi:10.1109/LAWP.2013.2247018
Ireland D, Bialkowski ME (2011) Microwave head imaging for stroke detection. Prog Electromagn Res M 21:163–175. doi:10.2528/PIERM11082907
Kim YJ, Jofre L, De Flaviis F, Feng MQ (2003) Microwave reflection tomographic array for damage detection of civil structures. IEEE Trans Antennas Propag 51:3022–3032. doi:10.1109/TAP.2003.818786
Kwiatkowski TG, Libman RB, Frankel M et al (1999) Effects of tissue plasminogen activator for acute ischemic stroke at one year. N Engl J Med 340:1781–1787. doi:10.1056/NEJM199906103402302
Larsen LE, Jacobi JH, IEEE Microwave Theory and Techniques Society (1986) Medical applications of microwave imaging. IEEE Press, New York
Lazebnik M, McCartney L, Popovic D et al (2007) A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys Med Biol 52:2637–2656. doi:10.1088/0031-9155/52/10/001
Manirabona A, Fourati LC, Boudjit S (2017) Investigation on healthcare monitoring systems: innovative services and applications. Int J E-Health Med Commun 8:1–18. doi:10.4018/IJEHMC.2017010101
Miao Z, Kosmas P (2017) Multiple-frequency DBIM-TwIST algorithm for microwave breast imaging. IEEE Trans Antennas Propag 65(5):2507–2516. doi:10.1109/TAP.2017.2679067
Mohammed BJ, Abbosh AM, Mustafa S, Ireland D (2014) Microwave system for head imaging. IEEE Trans Instrum Meas 63:117–123. doi:10.1109/TIM.2013.2277562
Monleone R, Pastorino M, Fortuny-Guasch J et al (2012) Impact of background noise on dielectric reconstructions obtained by a prototype of microwave axial tomograph. IEEE Trans Instrum Meas 61:140–148. doi:10.1109/TIM.2011.2159144
Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel Propag Lett 12:460–463. doi:10.1109/LAWP.2013.2255095
Mustafa S, Abbosh AM, Nguyen PT (2014) Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain. IEEE Trans Antennas Propag 62:1354–1361. doi:10.1109/TAP.2013.2296323
Nikolova N (2011) Microwave imaging for breast cancer. IEEE Microw Mag 12:78–94. doi:10.1109/MMM.2011.942702
O’Halloran M, Jones E, Glavin M (2010) Quasi-Multistatic MIST Beamforming for the early detection of breast cancer. IEEE Trans Biomed Eng 57:830–840. doi:10.1109/TBME.2009.2016392
Pastorino M (2010) Microwave imaging. Wiley, Hoboken
Pastorino M, Randazzo A, Fedeli A et al (2015) A microwave tomographic system for wood characterization in the forest products industry. Wood Mater Sci Eng 10:75–85. doi:10.1080/17480272.2014.898696
Persson M, Fhager A, Trefna HD et al (2014) Microwave-based stroke diagnosis making global Prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng 61:2806–2817. doi:10.1109/TBME.2014.2330554
Porter E, Coates M, Popovic M (2016) An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Trans Biomed Eng 63:530–539. doi:10.1109/TBME.2015.2465867
Ren K, Burkholder RJ (2016) A uniform diffraction tomographic imaging algorithm for near-field microwave scanning through stratified media. IEEE Trans Antennas Propag 64:5198–5207. doi:10.1109/TAP.2016.2617358
Ricci E, Di Domenico S, Cianca E, Rossi T (2015) Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp 1930–1933
Richmond J (1965) Scattering by a dielectric cylinder of arbitrary cross section shape. IEEE Trans Antennas Propag 13:334–341. doi:10.1109/TAP.1965.1138427
Riechers RG, Pasala KM, Ling GSF (1998) Microwave detection system for locating hemorrhage sites within the cranium and other regions. In: Proc 15th Annu AESSIEEE Dayt, Sect Symp Sens World Analog Sens Syst Spectr, pp 1–12
Scapaticci R, Di Donato L, Catapano I, Crocco L (2012) A feasibility study on microwave imaging for brain stroke monitoring. Prog Electromagn Res B 40:305–324. doi:10.2528/PIERB12022006
Semenov SY, Corfield DR (2008) Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propag. doi:10.1155/2008/254830
Semenov S, Hopfer M, Planas R, et al (2016) Electromagnetic tomography for brain imaging: 3D reconstruction of stroke in a human head phantom. In: Proc 2016 I.E. Conf Antenna Meas Appl CAMA pp 1–4
Shea JD, Van Veen BD, Hagness SC (2012) A TSVD analysis of microwave inverse scattering for breast imaging. IEEE Trans Biomed Eng 59:936–945. doi:10.1109/TBME.2011.2176727
Zamani A, Abbosh AM, Mobashsher AT (2016) Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection. IEEE Trans Microw Theory Tech 64(2):653–662. doi:10.1109/TMTT.2015.2513398
Zhang W, Hoorfar A (2014) Three-dimensional synthetic aperture radar imaging through multilayered walls. IEEE Trans Antennas Propag 62:459–462. doi:10.1109/TAP.2013.2287274
Zubal IG, Harrell CR, Smith EO et al (1994) Computerized three-dimensional segmented human anatomy. Med Phys 21:299–302. doi:10.1118/1.597290
Acknowledgments
The present work is partially supported by Compagnia di San Paolo, Italy.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Bisio, I., Fedeli, A., Lavagetto, F. et al. A numerical study concerning brain stroke detection by microwave imaging systems. Multimed Tools Appl 77, 9341–9363 (2018). https://doi.org/10.1007/s11042-017-4867-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4867-7