Skip to main content

Advertisement

Log in

Energy-efficient joint video encoding and transmission framework for WVSN

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an energy-efficient joint video encoding and transmission framework for network lifetime extension, under an end-to-end video quality constraint in the Wireless Video Sensor Networks (WVSN). This framework integrates an energy-efficient and adaptive intra-only video encoding scheme based on the H.264/AVC standard, that outputs two service differentiated macroblocks categories, namely the Region Of Interest and the Background. Empirical models describing the physical behavior of the measured energies and distortions, during the video encoding and transmission phases, are derived. These models enable the video source node to dynamically adapt its video encoder’s configuration in order to meet the desired quality, while extending the network lifetime. An energy-efficient and reliable multipath multi-priority routing protocol is proposed to route the encoded streams to the sink, while considering the remaining energy, the congestion level as well as the packet loss rates of the intermediate nodes. Moreover, this protocol interacts with the application layer in order to bypass congestion situations and continuously feed it with current statistics. Through extensive numerical simulations, we demonstrate that the proposed framework does not only extend the video sensor lifetime by 54%, but it also performs significant end-to-end video quality enhancement of 35% in terms of Mean Squared Error (MSE) measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aghdasi H, Abbaspour M, Moghadam M, Samei Y (2008) An energy-efficient and high-quality video transmission architecture in wireless video-based sensor networks. Sensors 4529–4559. doi:http://dx.doi.org/10.3390/s8074529 10.3390/s8074529

  2. Ahmad JJ, Khan HA, Khayam SA (2009) Energy efficient video compression for wireless sensor networks 43rd annual conference on information sciences and systems (CISS). doi:10.1109/CISS.2009.5054795. IEEE, pp 629–634

  3. Akyildiz IF, Melodia T, Chowdury K (2007) Wireless multimedia sensor networks: A survey, vol 51

  4. Alaoui-Fdili O, Coudoux F, Fakhri Y, Corlay P, Aboutajdine D (2013) Energy efficient adaptive video compression scheme for WVSNs The European signal processing conference. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6811596

    Google Scholar 

  5. Alaoui-Fdili O, Fakhri Y, Corlay P, Coudoux FX, Aboutajdine D (2014) Energy consumption analysis and modelling of a h.264/AVC intra-only based encoder dedicated to WVSNs The IEEE international conference on image processing. doi:10.1109/ICIP.2014.7025237, pp 1189–1193

    Google Scholar 

  6. Boluk PS, Baydere S, Harmanci AE (2011) Perceptual quality-based image communication service framework for wireless sensor networks. Wirel Commun Mob Comput 14(1):1–18. doi:10.1002/wcm.1218 10.1002/wcm.1218

    Article  Google Scholar 

  7. Costa D, Guedes L, Vasques F, Portugal P (2014) Relevance-based partial reliability in wireless sensor networks. EURASIP J Wirel Commun Netw 2014(1):142. doi:10.1186/1687-1499-2014-142

    Article  Google Scholar 

  8. Costa DG, Guedes LA (2011) A survey on multimedia-based cross-layer optimization in visual sensor networks. Sensors 11(5):5439–5468. doi:10.3390/s110505439

    Article  Google Scholar 

  9. Costa DG, Guedes LA (2012) A discrete wavelet transform (dwt)-based energy-efficient selective retransmission mechanism for wireless image sensor networks. Journal of Sensor and Actuator Networks 1(1):3–35. doi:10.3390/jsan1010003

    Article  Google Scholar 

  10. Felemban E, Chang-Gun L, Ekici E (2006) MMSPEED: multipath multi-speed protocol for QoS guarantee of reliability and. timeliness in wireless sensor networks. IEEE Trans Mob Comput 5(6):738–754. doi:10.1109/TMC.2006.79

    Article  Google Scholar 

  11. Felemban E, Sheikh AA, Manzoor MA (2014) Improving response time in time critical visual sensor network applications. Ad Hoc Netw 23:65–79. doi:10.1016/j.adhoc.2014.06.003

    Article  Google Scholar 

  12. He Y, Lee I, Guan L (2009) Distributed algorithms for network lifetime maximization in wireless visual sensor networks. IEEE Trans Circuits Syst Video Technol 19(5):704–718. doi:10.1109/TCSVT.2009.2017411

    Article  Google Scholar 

  13. He Z, Eggert J, Cheng W, Zhao X, Millspaugh J, Moll R, Beringer J, Sartwell J (2008) Energy-aware portable video communication system design for wildlife activity monitoring. IEEE Circuits Syst Mag 8(2):25–37. doi:10.1109/MCAS.2008.923007

    Article  Google Scholar 

  14. He Z, Liang Y, Chen L, Ahmad I, Wu D (2005) Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Trans Circuits Syst Video Technol 15(5):645–658. doi:10.1109/TCSVT.2005.846433

    Article  Google Scholar 

  15. Heinzelman W, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks The annual Hawaii international conference on system sciences. doi:10.1109/HICSS.2000.926982

  16. IEEE std 802.11e/D3.3 draft supplement to IEEE standard for telecommunications and information exchange between systems – LAN/MAN specific requirements. part 11: Wireless lan medium access control (MAC) and physical layer (PHY) (2002). http://www.ece.virginia.edu/~mv/edu/el604/references/P802_11E-D1_3.pdf

  17. Intel core2 duo processor. http://support.intel.co.jp/pressroom/kits/core2duo/

  18. ITU-T RECOMMENDATION P (1999) Subjective video quality assessment methods for multimedia applications

  19. Lambert P, Neve WD, Dhondt Y, de Walle RV (2006) Flexible macroblock ordering in H.264/AVC. J Vis Commun Image Represent 17(2):358–375. doi:10.1016/j.jvcir.2005.05.008 Introduction: Special Issue on emerging H.264/AVC video coding standard

  20. LILIN IPD2220ES. http://www.ttsys.com/pdf/RFID/IPD2220ES-EN_TTS_v4.pdf

  21. Lu X, Wang Y, Erkip E (2002) Power efficient H.263 video transmission over wireless channels The international conference on image processing. doi:10.1109/ICIP.2002.1038078, vol 1, pp 533–536

  22. Macit M, Gungor VC, Tuna G (2014) Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad Hoc Netw 19:132–141. doi:10.1016/j.adhoc.2014.02.008

    Article  Google Scholar 

  23. Politis I, Tsagkaropoulos M, Dagiuklas T, Kotsopoulos S (2008) Power efficient video multipath transmission over wireless multimedia sensor networks. Mob Netw Appl :274–284. doi:10.1007/s11036-008-0061-5

  24. Rui D, Pu W, Akyildiz I (2012) Correlation-aware QoS routing with differential coding for wireless video sensor networks. IEEE Trans Multimed 14(5):1469–1479. doi:10.1109/TMM.2012.2194992

    Article  Google Scholar 

  25. Sahin D, Gungor VC, Kocak T, Tuna G (2014) Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Netw 22:43–60. doi:10.1016/j.adhoc.2014.05.005

    Article  Google Scholar 

  26. Shah G, Liang W, Akan O (2012) Cross-layer framework for QoS support in wireless multimedia sensor networks. IEEE Trans Multimed 14(5):1442–1455. doi:10.1109/TMM.2012.2196510

    Article  Google Scholar 

  27. Sobeih A, Hou J, Kung L, Li N, Zhang H, Chen W, Tyan H, Lim H (2006) J-sim: a simulation and emulation environment for wireless sensor networks. IEEE Wirel Commun 13(4):104–119. doi:10.1109/MWC.2006.1678171

    Article  Google Scholar 

  28. Soro S, Heinzelman W (2009) A survey of visual sensor networks Adv Multimed. doi:10.1155/2009/640386

  29. Zhai F, Eisenberg Y, Pappas T, Berry R, Katsaggelos A (2006) Rate-distortion optimized hybrid error control for real-time packetized video transmission. IEEE Trans Image Process 15(1):40–53. doi:10.1109/TIP.2005.860353

    Article  Google Scholar 

  30. Zou J, Xiong H, Li C, Zhang R, He Z (2011) Lifetime and distortion optimization with joint source/channel rate adaptation and network coding-based error control in wireless video sensor networks. IEEE Trans Veh Technol 60(3):1182–1194. doi:10.1109/TVT.2011.2111425

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the excellence fellowships program of the National Center for Scientific and Technical Research (CNRST) of Morocco (G01/003) and the Franco-Moroccan cooperation program in STICs for the research project “RECIF”.

The authors would also like to thank the editorial office Christian Malan, the editor-in-chief, the guest editors as well as the anonymous reviewers for their efforts and valuable comments and suggestions that have led to improvements in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othmane Alaoui-Fdili.

Additional information

Driss Aboutajdine died before publication of this work was completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaoui-Fdili, O., Coudoux, FX., Fakhri, Y. et al. Energy-efficient joint video encoding and transmission framework for WVSN. Multimed Tools Appl 77, 4509–4541 (2018). https://doi.org/10.1007/s11042-017-4904-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4904-6

Keywords