Skip to main content

Advertisement

Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an optimized contrast enhancement algorithm for color images that improves visual perception of information. As color plays an important cue in many application areas, to prevent unwanted artifacts on color, our proposed method translates the color image into de-correlated lαβ color space based on the statistics of cone response to natural images. A color is defined in the lαβ space by an achromatic channel (brightness l), the red, green chrominance channel (α) and the yellow-blue chrominance channel (β). In order to avoid over saturation and annoying artifacts, our method is applied to the luminance component of the image and α and β are kept as constants. The key work of this paper is to use an adaptive gamma correction factor chosen by particle swarm optimization (PSO) to improve the entropy and enhance the details of the image. Gamma correction is a well-established technique that preserves the mean brightness of an image and produces more natural looking images by the choice of an optimal gamma factor. In the proposed method, the edge content and entropy are used as an objective function for each particle since a color image with good visual contrast includes many intensive edges. Since edges play a primary role in image understanding, one good way to enhance the contrast is to enhance the edges. Simulation results indicate that the proposed PSO optimized contrast enhancement improves overall image contrast and enriches the information present in the image. The proposed method is suitable for many real-time image processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aghagolzadeh S, Ersoy O (1992) Transform image enhancement. Opt Eng 31(3):614–626

    Article  Google Scholar 

  2. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935

    Article  MathSciNet  MATH  Google Scholar 

  3. Behera SK, Mishra S, Rana D (2015) Image enhancement using accelerated particle swarm optimization. Int J Eng Res Technol 4(3):1049–1054

  4. Bianco G, Muzzupappa M, Bruno F, Garcia R, Neumann L (2015) A New color correction method for underwater imaging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W5, Underwater 3D Recording and Modeling, Piano di Sorrento, Italy

  5. Caselles V, Lisani J, Morel J, Sapiro G (1998) Shape preserving local histogram modification. IEEE Trans Image Process 8(2):220–230

    Article  Google Scholar 

  6. Chen S, Ramli A (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309

    Article  Google Scholar 

  7. Chen SD, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Article  Google Scholar 

  8. Chen SD, Ramli AR (2004) Preserving brightness in histogram equalization based contrast enhancement techniques. Digital Signal Processing 14(5):413–428

    Article  Google Scholar 

  9. Chen Q, Xu X, Sun Q, Xia D (2010) A solution to the deficiencies of image enhancement. Signal Process 90:44–56

    Article  MATH  Google Scholar 

  10. Chiu Y-S, Cheng F-C (2011) Efficient contrast enhancement Using adaptive gamma correction and cumulative intensity distribution. In: Proc. IEEE Conf. Syst. Man Cybern, pp 2946–2950

  11. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  12. Coltuc D, Bolon P, Chassery J (2006) Exact histogram specification. IEEE Trans Image Process 15(5):1143–1156

    Article  Google Scholar 

  13. Coltuc D, Bolon P, Chassery J (2006) Exact histogram specification. IEEE Trans Image Process 15(5):1143–1151

    Article  Google Scholar 

  14. Dhariwal S (2011) Comparative Analysis of various image enhancement technique. IJECT 2(3):91–95

  15. Fonseca L, Namikawa L, Castejon E, Carvalho L, Pinho C, Pagamisse A. Image fusion for remote sensing applications. Chapter 9, pp 153–178

  16. Gauch J, Hsia C-W (1992) A comparison of three color image segmentation algorithm in four color spaces. In: Visual Communications and Image Processing'92, SPIE 1818, pp 1168–1181

  17. Gonzalez RC, Woods RE (2007) Digital Image Processing, 3rd edn. Pearson Education

  18. Gorai A, Ghosh A (2009) Gray-level image enhancement by particle swarm optimization. In: Proceedings of Nature & Biologically inspired computing, NaBIC, pp 72–77

  19. Gupta B, Kaur Y (2014) Review of different histogram equalization based contrast enhancement techniques. Int J adv Res Comput Commun Eng 3(7):7585–7589

    Google Scholar 

  20. Gupta S, Kaur Y (2014) Review of different local and global contrast enhancement techniques for a digital image. Int J Comp Appl 100(18). doi:10.5120/17625-8384

  21. Huang S-C, Cheng F-C, Chiu Y-S (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  MATH  Google Scholar 

  22. Jidesh P, Bini AA (2014) A curvature-driven image Inpainting approach for high-density impulse noise removal. Arab J Sci Eng 39:3691–3713

    Article  Google Scholar 

  23. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equation. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  24. Kwok NM, Shi HY, Ha QP, Fang G, Chen SY, Jia X (2013) Simultaneous image color correction and enhancement using particle swarm optimization. Eng Appl Artif Intell 26:2356–2371

    Article  Google Scholar 

  25. Liu L, Li W, Tang S, Gong W (2012) A novel separating strategy for face hallucination. 19th IEEE International Conference on Image Processing, Orlando, pp 1849–1852. doi: 10.1109/ICIP.2012.6467243

  26. Nickfarjam AM, Soltaninejad S, Tajeripour F (2014) A novel supervised bi-level thresholding technique based on particle swarm optimization. Arab J Sci Eng 39:753–766. doi:10.1007/s13369-013-0638-6

    Article  Google Scholar 

  27. Ooi CH, Isa NAM (2010) Quadrants Dynamic Histogram Equalization for contrast enhancement. IEEE Trans Consum Electron 56(4):2552–2559

  28. Ooi CH, Mat Isa NA (2010) Adaptive contrast enhancement methods with brightness preserving. IEEE Trans Consum Electron 56(4):2543–2551

    Article  Google Scholar 

  29. Pizer S, Amburn E, Austin J, Cromartie R, Geselowitz A, Greer T, Romeny B, Zimmerman J, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  30. Puiono, Pulung NA, Purnama IKE, Hariadi M (2013) Color enhancement of underwater voral reef images using contrast limited adaptive histogram equalization (CLAHE) with Rayleigh distribution. The Proceedings of the 7th ICTS, Bali

  31. Qinqing G, Guang, Z, Dexin, C, Ketai H (2011) Image enhancement technique based on improved PSO algorithm. In: Proceedings of Industrial Electronics and Applications (ICIEA), pp 234–238. IEEE. doi:10.1109/ICIEA.2011.5975586

  32. Radman A, Jumari K, Zainal N (2004) Iris segmentation in visible wavelength images using circular Gabor filters and optimization. Arab J Sci Eng 39:3039–3049

    Article  Google Scholar 

  33. Rao SS (2013) Engineering Optimization Theory and practice, 3rd edn. Wiley

  34. Reinhard E, Ashikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21:34–41

    Article  Google Scholar 

  35. Ruderman DL (1998) Statistics of cone responses to natural images: implications for visual coding. J Opt Soc Am 15(8):2036–2045

    Article  Google Scholar 

  36. Shanmugavadivu P, Balasubramanian K (2014) Particle swarm optimized multi-objective histogram equalization for image enhancement. Opt Laser Technol 57:243–251

    Article  Google Scholar 

  37. Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness Preserving Dynamic Fuzzy Histogram Equalization. IEEE Trans Consum Electron 56(4):2475–2480

  38. Shi W, Zhu C, Tian Y, Nichol J (2005) Wavelet-based image fusion and quality assessment. Int J Appl Earth Obs Geoinf 6:241–251

    Article  Google Scholar 

  39. Stark J (2000) Adaptive contrast enhancement using generalization of histogram equalization. IEEE Trans Image Process 9(5):889–906

    Article  Google Scholar 

  40. Stark JA (2000) Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 9(5):889–896

  41. Subhashdas SK, Choi B-S, Yoo J-H, Ha Y-H. Color Image Enhancement Based on Particle Swarm Optimization with Gaussian Mixture. Proc. of SPIE-IS&T, vol 9395 939508–1

  42. Travis D (1991) Effective Color Displays. Theory and Practice. Academic Press, ISBN 0–12–697690-2

  43. Vishwakarma AK, Mishra A (2012) Color image enhancement techniques: a critical review. Indian J Comput Sci Eng 3(1):39–45

  44. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  45. Wang Y-j, Qiu H-k, Wang L-l, Shi X-b (2013) Research on the algorithm of night vision image fusion and coloration. The Journal of China Universities of Posts and Telecommunications 20(1):20–24

    Article  Google Scholar 

  46. Wei ZG, Yuan JH, Cai YL (1999) A picture quality evaluation method based onhuman perception. Acta Electron Sin 27(4):79–82

    Google Scholar 

  47. Welsh T, Ashikhmin M, Mueller K. Transferring Color to Greyscale Images. http://www.cs.sunysb.edu/~tfwelsh/colorize

  48. Wyszecki G, Stiles WS (1982) Color science— concepts and methods, quantitative data and formulae. Wiley, NY

    Google Scholar 

  49. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Academic Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madheswari Kanmani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanmani, M., Narasimhan, V. Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images. Multimed Tools Appl 77, 12701–12724 (2018). https://doi.org/10.1007/s11042-017-4911-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4911-7

Keywords