Skip to main content
Log in

VBI-MRF model for image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In statistical image segmentation, the distribution of pixel values is usually assumed to be Gaussian and the optimal result is believed to be the one that has maximum a posteriori (MAP) probability. In spite of its prevalence and computational efficiency, the Gaussian assumption, however, is not always strictly followed, and hence may lead to less accurate results. Although the variational Bayes inference (VBI), in which statistical model parameters are also assumed to be random variables, has been widely used, it can hardly handle the spatial information embedded in pixels. In this paper, we incorporate spatial smoothness constraints on pixels labels interpreted by the Markov random field (MRF) model into the VBI process, and thus propose a novel statistical model called VBI-MRF for image segmentation. We evaluated our algorithm against the variational expectation-maximization (VEM) algorithm and the hidden Markov random field (HMRF) model and MAP-MRF model based algorithms on both noise-corrupted synthetic images and mosaics of natural texture. Our pilot results suggest that the proposed algorithm can segment images more accurately than other three methods and is capable of producing robust image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banerjee A, Maji P (2015) Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain mr images. IEEE Trans Image Process 24(12):5764–5776

    Article  MathSciNet  Google Scholar 

  2. Bishop CM (2006) Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc

  3. Brodatz P (1976). Land, sea, and sky : a photographic album for artists and designers. Dover Publications

  4. Chen S, Cao L, Wang Y, Liu J, Tang X (2010) Image segmentation by map-ml estimations. IEEE Trans Image Process Publ IEEE Signal Process Soc 19(9):2254–2264

    Article  MathSciNet  MATH  Google Scholar 

  5. Comer ML, Delp EJ (2000) The em/mpm algorithm for segmentation of textured images: analysis and further experimental results. IEEE Trans Image Process 9(10):1731–1744

    Article  MATH  Google Scholar 

  6. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via Em algorithm. J R Stat Soc Ser B-Methodol 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  7. Deng H, Clausi DA (2004) Unsupervised image segmentation using a simple mrf model with a new implementation scheme. Pattern Recogn 37(12):2323–2335

    Article  Google Scholar 

  8. Depeursinge A, Foncubiertarodriguez A, Van DVD, Muller H (2014) Rotation-covariant texture learning using steerable riesz wavelets. IEEE Trans Image Process Publ IEEE Signal Process Soc 23(2):898–908

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoser M, Riemenschneider H, & Bischof H (2010) Linked edges as stable region boundaries. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, Ca, Usa, 13–18 June (Vol.23, pp.1665–1672). DBLP

  10. Eches O, Benediktsson JA, Dobigeon N, Tourneret JY (2012) Adaptive markov random fields for joint unmixing and segmentation of hyperspectral images. IEEE Trans Image Process 22(1):5–16

    Article  MathSciNet  MATH  Google Scholar 

  11. Farag AA, Mohamed RM, El-Baz A (2005) A unified framework for map estimation in remote sensing image segmentation. IEEE Trans Geosci Remote Sens 43(7):1617–1634

    Article  Google Scholar 

  12. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  13. Fogel I, Sagi D (1989) Gabor filters as texture discriminator. Biol Cybern 61(2):103–113

    Article  Google Scholar 

  14. Fu KS, Mui JK (1981) A survey on image segmentation ☆. Pattern Recogn 13(1):3–16

    Article  MathSciNet  Google Scholar 

  15. Geman S, Geman D (1987) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):564–584

    MATH  Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern smc-3(6):610–621

    Article  Google Scholar 

  17. Hatt M, Cheze LRC, Turzo A, Roux C, Visvikis D (2009) A fuzzy locally adaptive bayesian segmentation approach for volume determination in pet. IEEE Trans Med Imaging 28(6):881–893

    Article  Google Scholar 

  18. Huang A, Abugharbieh R, Tam R (2010) A novel rotationally invariant region-based hidden markov model for efficient 3-d image segmentation. IEEE Trans Image Process 19(10):2737–2748

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji J, Wang KL (2015) A robust nonlocal fuzzy clustering algorithm with between-cluster separation measure for sar image segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 7(12):4929–4936

    Article  Google Scholar 

  20. Ji Z, Sun Q, Xia Y, Chen Q, Xia D, Feng D (2012) Generalized rough fuzzy c-means algorithm for brain mr image segmentation. Comput Methods Prog Biomed 108(2):644–655

    Article  Google Scholar 

  21. Ji Z, Xia Y, Chen Q, Sun Q, Xia D, Feng DD (2012) Fuzzy c-means clustering with weighted image patch for image segmentation. Appl Soft Comput 12(6):1659–1667

    Article  Google Scholar 

  22. Ji Z, Xia Y, Sun Q, Chen Q, Feng D (2014) Adaptive scale fuzzy local gaussian mixture model for brain mr image segmentation. Neurocomputing 134(3):60–69

    Article  Google Scholar 

  23. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  24. Krähenbühl P, & Koltun V (2012) Efficient inference in fully connected crfs with gaussian edge potentials. Conference and Workshop on Neural Information Processing Systems 109–117

  25. Krinidis M, Pitas I (2009) Color texture segmentation based on the modal energy of deformable surfaces. IEEE Trans Image Process 18(7):1613–1622

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuusela M, Raiko T, Honkela A, & Karhunen J (2009) A gradient-based algorithm competitive with variational Bayesian EM for mixture of Gaussians. International Joint Conference on Neural Networks, IJCNN 2009, Atlanta, Georgia, Usa, 14–19 June (pp.1688–1695)

  27. Li SZ (1970) Modeling image analysis problems using markov random fields. Handb Stat 21(03):473–513

    MathSciNet  Google Scholar 

  28. Li SZ (2009). Markov random field modeling in image analysis. Springer London

  29. Li Z, Liu Q, Cheng J, & Lu H (2008) A variational inference based approach for image segmentation. International Conference on Pattern Recognition (pp.1–4)

  30. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process Publ IEEE Signal Process Soc 19(12):3243

    MathSciNet  MATH  Google Scholar 

  31. Liu G, Zhang Y, Wang A (2015) Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(11):3990–4000

    MathSciNet  Google Scholar 

  32. Manjunath BS, Chellappa R (1991) Unsupervised texture segmentation using markov random field models. IEEE Trans Pattern Anal Mach Intell 13(5):478–482

    Article  Google Scholar 

  33. Marr D, Hildreth E (1979) Theory of edge detection. Proc R Soc Lond 207(1167):187–217

    Article  Google Scholar 

  34. Marroquin J, Mitter S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82(397):76–89

    Article  MATH  Google Scholar 

  35. Marroquin JL, Santana EA, Botello S (2003) Hidden markov measure field models for image segmentation. IEEE Trans Pattern Anal Mach Intell 25(11):1380–1387

    Article  Google Scholar 

  36. Nasios N, Bors AG (2006) Variational learning for gaussian mixture models. IEEE Trans Syst Man Cybern Part B Cybern Publ IEEE Syst Man Cybern Soc 36(4):849–862

    Article  Google Scholar 

  37. Nguyen TM, Wu QMJ (2013) Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans Circuits Syst Video Technol 23(4):621–635

    Article  Google Scholar 

  38. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  39. Pavlidis T (1979) Hierarchies in structural pattern recognition. Proc IEEE 67(5):737–744

    Article  Google Scholar 

  40. Ribes S, Didierlaurent D, Decoster N, Gonneau E, Risser L, Feillel V et al (2014) Automatic segmentation of breast mr images through a markov random field statistical model. Med Imaging IEEE Trans on 33(10):1986–1996

    Article  Google Scholar 

  41. Tzikas DG, Likas CL, Galatsanos NP (2008) The variational approximation for bayesian inference. Signal Process Mag IEEE 25(6):131–146

    Article  Google Scholar 

  42. Wang W, Yan Y, Winkler S, Sebe N (2016) Category specific dictionary learning for attribute specific feature selection. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(3):1465–1478

    Article  MathSciNet  Google Scholar 

  43. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE Multimed 23(4):80–87

    Article  Google Scholar 

  44. Wang W, Cui Z, Yan Y, Feng J, Yan S, & Shu X, et al. (2016) Recurrent Face Aging. IEEE Conf Comput Vis Pattern Recognit :2378–2386

  45. Wong WCK, Chung ACS (2005) Bayesian image segmentation using local iso-intensity structural orientation. IEEE Trans Image Process 14(10):1512–1523

    Article  Google Scholar 

  46. Xia Y, Zhang Y (2014) Learning large number of local statistical models via variational Bayesian inference for brain voxel classification in magnetic resonance images. Int Conf Secur, Pattern Anal, Cybern 61:59–64

    Google Scholar 

  47. Xia Y, Feng D, Zhao R (2006) Morphology-based multifractal estimation for texture segmentation. IEEE Trans Image Process Publ IEEE Signal Process Soc 15(15):614–623

    Google Scholar 

  48. Xiao Y, Zeng T, Yu J, Ng MK (2011) Restoration of images corrupted by mixed gaussian-impulse noise via l1-l0 minimization. Pattern Recogn 44(8):1708–1720

    Article  MATH  Google Scholar 

  49. Yan C et al (2011) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  50. Yan C, Zhang Y, Dai F, Li L (2013) Highly parallel framework for HEVC motion estimation on many-Core platform. Data Compression Conf 6:63–72

    Google Scholar 

  51. Yan C et al (2014) Parallel deblocking filter for HEVC on many-core processor. Electron Lett 50(5):367–368

    Article  Google Scholar 

  52. Yan C et al (2014) Efficient parallel HEVC intra-prediction on many-core processor. Electron Lett 50(11):805–806

    Article  MathSciNet  Google Scholar 

  53. Yan C et al (2014) Efficient parallel framework for HEVC motion estimation on many-Core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  54. Zhang Y, Brady M, Smith S (2001) Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  Google Scholar 

  55. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61471297, in part by the Natural Science Foundation of Shaanxi Province, China, under Grant 2015JM6287, and in part by the Returned Overseas Scholar Project of Shaanxi Province, China.

We appreciate the efforts devoted by the authors of the Brodatz album and the MSRC-21 dataset to collect and share the data for comparing texture description and image segmentation algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Li, Z. VBI-MRF model for image segmentation. Multimed Tools Appl 77, 13343–13361 (2018). https://doi.org/10.1007/s11042-017-4951-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4951-z

Keywords

Navigation