Skip to main content
Log in

Nonnegative matrix factorization by joint locality-constrained and 2,1-norm regularization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Nonnegative matrix factorization has been widely applied recently. The nonnegativity constraints result in parts-based, sparse representations which can be more robust than global, non-sparse features. However, existing techniques could not accurately dominate the sparseness. To address this issue, we present a unified criterion, called Nonnegative Matrix Factorization by Joint Locality-constrained and 2,1-norm Regularization(NMF2L), which is designed to simultaneously perform nonnegative matrix factorization and locality constraint as well as to obtain the row sparsity. We reformulate the nonnegative local coordinate factorization problem and use 2,1-norm on the coefficient matrix to obtain row sparsity, which results in selecting relevant features. An efficient updating rule is proposed, and its convergence is theoretically guaranteed. Experiments on benchmark face datasets demonstrate the effectiveness of our presented method in comparison to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belhumeur PN, Hespanha JP, Kriegman D et al (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  2. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

  3. Bradley PS, Mangasarian OL (1998) Feature selection via concave minimization and support vector machines. In: International conference on machine learning, pp 82–90

  4. Cai D, He X, Han J et al (2007) Spectral regression: a unified approach for sparse subspace learning. In: International conference on data mining, pp 73–82

  5. Cai D, He X, Han J et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33 (8):1548–1560

    Article  Google Scholar 

  6. Chang X, Nie F, Yang Y et al (2014) A convex formulation for semi-supervised multi-label feature selection. In: Twenty-eighth AAAI conference on artificial intelligence. AAAI Press, pp 1171–1177

  7. Chang X, Nie F, Yang Y et al (2016) Convex sparse PCA for unsupervised feature learning. ACM Trans Knowl Discov Data (TKDD) 11(1):3:1–3:16

    Google Scholar 

  8. Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2016.2582746

    Article  MathSciNet  Google Scholar 

  9. Chao Y, Yeh Y, Chen Y et al (2011) Locality-constrained group sparse representation for robust face recognition. In: International conference on image processing, pp 761–764

  10. Chen Y, Zhang J, Cai D et al (2013) Nonnegative local coordinate factorization for image representation. IEEE Trans Image Process 22(3):969–979

    Article  MathSciNet  Google Scholar 

  11. Geng B, Tao D, Xu C et al (2012) Ensemble manifold regularization. IEEE Trans Pattern Anal Mach Intell 34(6):1227–1233

    Article  Google Scholar 

  12. Gu Q, Li Z, Han J et al (2011) Joint feature selection and subspace learning. In: International joint conference on artificial intelligence, pp 1294–1299

  13. Hou C, Nie F, Yi D et al (2011) Feature selection via joint embedding learning and sparse regression. In: International joint conference on artificial intelligence, pp 1324–1329

  14. Hoyer PO (2002) Non-negative sparse coding. In: Proceedings of IEEE workshop on neural networks for signal processing, pp 557–565

  15. Jiang W, Li M, Zhang Y (2014) Neighborhood preserving convex nonnegative matrix factorization. Math Probl Eng 2014(2):1–8

    MathSciNet  MATH  Google Scholar 

  16. Jiang W, Liu J, Qi H et al (2016) Robust subspace segmentation via nonconvex low rank representation. Inf Sci 340:144–158

    Article  MathSciNet  Google Scholar 

  17. Kotsiantis SB (2014) RETRACTED ARTICLE: feature selection for machine learning classification problems: a recent overview[J]. Artif Intell Rev 42(1):157–157

    Article  Google Scholar 

  18. Lee D, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  Google Scholar 

  19. Liu H, Wu Z, Li X et al (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311

    Article  Google Scholar 

  20. Liu H, Yang Z, Wu Z et al (2011) Locality-constrained concept factorization. In: International joint conference on artificial intelligence, pp 1378–1383

  21. Liu H, Yang Z, Wu Z et al (2012) A-optimal non-negative projection for image representation. Comput Vision Pattern Recogn, 1592–1599

  22. Luo M, Nie F, Chang X et al (2016) Avoiding optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization. In: International joint conference on artificial intelligence

  23. Luo M, Nie F, Chang X et al (2017) Probabilistic non-negative matrix factorization and its robust extensions for topic modeling. In: Thirty-first AAAI conference on artificial intelligence

  24. Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint 2,1-norms minimization. Neural Inform Process Syst, 1813–1821

  25. Nie L, Song X, Chua TS (2016) Learning from multiple social networks. Synthesis Lect Inform Concepts Retriev Serv 8(2):118–129

    Google Scholar 

  26. Nie L, Zhang L, Wang M et al (2017) Learning user attributes via mobile social multimedia analytics. ACM Trans Intell Syst Technol (TIST) 8(3):36–47

    Google Scholar 

  27. Qi H, Li K, Shen Y et al (2012) Object-based image retrieval with kernel on adjacency matrix and local combined features. ACM Trans Multimed Comput Commun Appl 8(4):1–18

    Article  Google Scholar 

  28. Roweis S, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  29. Song X, Nie L, Zhang L et al (2015) Interest inference via structure-constrained multi-source multi-task learning. In: International conference on artificial intelligence. AAAI Press, pp 2371–2377

  30. Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. Comput Vision Pattern Recogn, 3360–3367

  31. Wang R, Nie F, Yang X et al (2015) Robust 2DPCA with non-greedy, 1-norm maximization for image analysis[J]. IEEE Trans Cybern 45(5):1108–1112

    Article  Google Scholar 

  32. Wei C, Chao Y, Yeh Y et al (2013) Locality-sensitive dictionary learning for sparse representation based classification. Pattern Recogn 46(5):1277–1287

    Article  Google Scholar 

  33. Xu W, Gong Y (2004) Document clustering by concept factorization. In: Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval. ACM, pp 202–209

  34. Xu W, Liu X, Gong Y et al (2003) Document clustering based on non-negative matrix factorization. In: International ACM SIGIR conference on research and development in information retrieval, pp 267–273

  35. Yang Y, Shen HT, Ma Z et al (2011) 2,1-norm regularized discriminative feature selection for unsupervised learning[c]. In: International joint conference on artificial intelligence, pp 1589–1594

  36. Yu K, Zhang T, Gong Y et al (2009) Nonlinear learning using local coordinate coding. Neural information processing systems, 2223–2231

  37. Zheng M, Bu J, Chen C et al (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank all anonymous reviewers for their helpful comments. This work is supported by the Natural Science Foundation of Liaoning No. 2015020070, and the Natural Science Foundation of China No.61171109 and 61175048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Dong, H., Jiang, W. et al. Nonnegative matrix factorization by joint locality-constrained and 2,1-norm regularization. Multimed Tools Appl 77, 3029–3048 (2018). https://doi.org/10.1007/s11042-017-4970-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4970-9

Keywords

Navigation