Skip to main content
Log in

Efficient inverse transform methods for VPL selection in global illumination

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In computer graphics, designing efficient Global Illumination methods is a hot research topic. These methods consist in computing the light distribution inside a 3D scene. There exist several global illumination-based rendering methods, but one popular approach is based on Virtual Point Light (VPL). It is a two-step approach. First, the algorithm generates VPLs that act as secondary light sources (indirect illumination). Second, the radiance of a pixel is computed by summing the contributions of a small set of VPLs (rather than all the VPLs) selected randomly. The most active issues rely on how to select a small set of VPLs that contribute more to the final image. In this paper, we propose two new VPL selection methods using the inverse transform method. To provide realistic images, we propose a Multiple Importance Sampling technique combining an inverse transform method with a gathering approach. The obtained results demonstrate the effectiveness of our methods in terms of image quality and rendering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agarwal S, Ramamoorthi R, Belongie S, Jensen H W (2003) Structured importance sampling of environment maps. ACM Trans Graph (TOG) 22(3):605–612

    Article  Google Scholar 

  2. Arvo J, Kirk D (1990) Particle transport and image synthesis. ACM SIGGRAPH Computer Graphics 24(4):63–66

    Article  Google Scholar 

  3. Barák T, Bittner J, Havran V (2013) Temporally coherent adaptive sampling for imperfect shadow maps Computer graphics forum, wiley online library, vol 32, pp 87–96

  4. Brabec S, Annen T, Seidel HP (2002) Shadow mapping for hemispherical and omnidirectional light sources, Springer

  5. Crassin C, Green S (2012) Octree-based sparse voxelization using the gpu hardware rasterizer. OpenGL Insights 303–318

  6. Crassin C, Neyret F, Lefebvre S, Eisemann E (2009) Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering Proceedings of the 2009 symposium on interactive 3d graphics and games. ACM, pp 15–22

  7. Dachsbacher C, Stamminger M (2005) Reflective shadow maps Proceedings of the 2005 symposium on interactive 3d graphics and games. ACM, pp 203–231

  8. Dammertz H, Keller A, Lensch H P (2010) Progressive point-light-based global illumination Computer graphics forum, wiley online library, vol 29, pp 2504–2515

  9. Dong Z, Grosch T, Ritschel T, Kautz J, Seidel HP (2009) Real-time indirect illumination with clustered visibility VMV, pp 187–196

  10. Dutré P (2003) Global illumination compendium. Computer Graphics, Department of Computer Science Katholieke Universiteit Leuven 6

  11. Gascuel JD, Holzschuch N, Fournier G, Peroche B (2008) Fast non-linear projections using graphics hardware Proceedings of the 2008 symposium on interactive 3d graphics and games. ACM, pp 107–114

  12. Georgiev I, Slusallek P (2010) Simple and robust iterative importance sampling of virtual point lights. Proceedings of Eurographics (short papers) 4

  13. Gilks WR (2005) Markov chain monte carlo. Encyclopedia of biostatistics

  14. Greene N (1986) Environment mapping and other applications of world projections. IEEE Comput Graph Appl 6(11):21–29

    Article  Google Scholar 

  15. Hašan M, Křivánek J, Walter B, Bala K (2009) Virtual spherical lights for many-light rendering of glossy scenes ACM Transactions on graphics (TOG), vol 28. ACM, p 143

  16. Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–109

    Article  MathSciNet  MATH  Google Scholar 

  17. Hedman P, Karras T, Lehtinen J (2016) Sequential monte carlo instant radiosity. ACM

  18. Heidrich W, Seidel HP (1998) View-independent environment maps Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware. ACM, pp 39–ff

  19. Hu W, Huang Y, Zhang F, Yuan G, Li W (2014) Ray tracing via gpu rasterization. Vis Comput 30(6-8):697–706

    Article  Google Scholar 

  20. Hua B S, Low K L (2015) Guided path tracing using clustered virtual point lights SIGGRAPH Asia 2015 posters. ACM, p 43

  21. Jensen HW (1996) Global illumination using photon maps Rendering techniques 96. Springer, pp 21–30

  22. Keller A (1997) Instant radiosity Proceedings of the 24th annual conference on computer graphics and interactive techniques. ACM press/addison-wesley publishing co., pp 49–56

  23. Lafortune EP, Willems YD (1993) Bi-directional path tracing

  24. Mantiuk R, Kim K J, Rempel A G, Heidrich W (2011) Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions ACM Transactions on graphics (TOG), vol 30. ACM, p 40

  25. McGuire M (2011) Computer graphics archive. http://graphics.cs.williams.edu/data

  26. Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21 (6):1087–1092

    Article  Google Scholar 

  27. Nabata K, Iwasaki K, Dobashi Y, Nishita T (2016) An error estimation framework for many-light rendering Computer graphics forum, wiley online library, vol 35, pp 431–439

  28. Novák J, Engelhardt T, Dachsbacher C (2011) Screen-space bias compensation for interactive high-quality global illumination with virtual point lights Symposium on interactive 3D graphics and games. ACM, pp 119–124

  29. Olsson O, Billeter M, Sintorn E, Kämpe V, Assarsson U (2015) More efficient virtual shadow maps for many lights. IEEE Trans Vis Comput Graph 21 (6):701–713

    Article  Google Scholar 

  30. Reinhard E, Stark M, Shirley P, Ferwerda J (2002) Photographic tone reproduction for digital images. ACM Trans Graph (TOG) 21(3):267–276

    Article  Google Scholar 

  31. Ritschel T, Grosch T, Kim M H, Seidel H P, Dachsbacher C, Kautz J (2008) Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans Graph (TOG) 27(5):129

    Article  Google Scholar 

  32. Ritschel T, Eisemann E, Ha I, Kim J D, Seidel H P (2011) Making imperfect shadow maps view-adaptive: High-quality global illumination in large dynamic scenes Computer graphics forum, wiley online library, vol 30, pp 2258–2269

  33. Ritschel T, Dachsbacher C, Grosch T, Kautz J (2012) The state of the art in interactive global illumination Computer graphics forum, wiley online library, vol 31, pp 160–188

  34. Segovia B (2007) Interactive light transport with virtual point lights. These de doctorat en informatique. Université, Lyon 1

  35. Simon F, Hanika J, Dachsbacher C (2015) Rich-vpls for improving the versatility of many-light methods Computer graphics forum, wiley online library, vol 34, pp 575–584

  36. Thiedemann S, Henrich N, Grosch T, Müller S (2011) Voxel-based global illumination Symposium on interactive 3D graphics and games. ACM, pp 103–110

  37. Veach E (1997) Robust monte carlo methods for light transport simulation. Stanford University, PhD thesis

    Google Scholar 

  38. Walter B, Fernandez S, Arbree A, Bala K, Donikian M, Greenberg D P (2005) Lightcuts: a scalable approach to illumination ACM Transactions on graphics (TOG), vol 24. ACM, pp 1098– 1107

  39. Walter B, Arbree A, Bala K, Greenberg D P (2006) Multidimensional lightcuts ACM Transactions on graphics (TOG), vol 25. ACM, pp 1081–1088

  40. Williams L (1978) Casting curved shadows on curved surfaces ACM Siggraph computer graphics, vol 12. ACM, pp 270–274

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djihane Babahenini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babahenini, D., Gruson, A., Chaouki Babahenini, M. et al. Efficient inverse transform methods for VPL selection in global illumination. Multimed Tools Appl 77, 13571–13595 (2018). https://doi.org/10.1007/s11042-017-4976-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4976-3

Keywords

Navigation