Skip to main content
Log in

Discriminative multi-task multi-view feature selection and fusion for multimedia analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multimedia content analysis and understanding, such as action recognition and image classification, is a fundamental research problem. One effective strategy to improve the performance is designing discriminative visual representation, for example combining multiple feature sets for representation. However, simply combing these features may cause high dimensionality and lead to noises. Feature selection and fusion are common choices for multiple feature representation. At the same time, multi-task feature learning has been proven to be an effective method by many researches. In this paper, we propose a multi-task multi-view feature selection and fusion method which chooses and fuses discriminative features. For discriminative feature selection, we learn the selection matrix W by the minimization of the trace ratio objective function. For multiple tasks measurement, we employ the 2,1-norm regularization to solve single task and share information among tasks. For multiple feature fusion, we incorporate local structures of each view in the Laplacian matrix. Since the Laplacian matrix is constructed in unsupervised manner and scaled category indicator matrix is solved iteratively, our work is fully unsupervised. Experimental results on four action recognition datasets and five image classification datasets demonstrate the effectiveness of multi-task multi-view feature selection and fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://research.microsoft.com/en-us/projects/objectclassrecognition/

References

  1. Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–272

    Article  Google Scholar 

  2. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the annual conference on computational learning theory, ACM, pp 92–100

  3. Cai X, Nie F, Huang H, Ding C (2011) Multi-class l2, 1-norm support vector machine. In: IEEE international conference on data mining (ICDM), IEEE, pp 91–100

  4. Chang X, Yu YL, Yang Y, Xing EP (2016) Semantic pooling for complex event analysis in untrimmed videos. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2016.2608901

    Article  Google Scholar 

  5. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26 (8):3911–3920. https://doi.org/10.1109/TIP.2017.2708506

    Article  MathSciNet  Google Scholar 

  6. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197. https://doi.org/10.1109/TCYB.2016.2539546

    Article  Google Scholar 

  7. Chen X, Lin Q, Kim S, Carbonell JG, Xing EP et al (2012) Smoothing proximal gradient method for general structured sparse regression. Ann Appl Stat 6 (2):719–752

    Article  MathSciNet  Google Scholar 

  8. Delaitre V, Laptev I, Sivic J (2010) Recognizing human actions in still images: a study of bag-of-features and part-based representations. In: BMVC

  9. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, Hoboken

    MATH  Google Scholar 

  10. Evgeniou A, Pontil M (2007) Multi-task feature learning. Advances in Neural Information Processing Systems

  11. Feng Y, Xiao J, Zhuang Y, Liu X (2013) Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, Springer, pp 343–357

    Chapter  Google Scholar 

  12. Gong Y, Ke Q, Isard M, Lazebnik S (2014) A multi-view embedding space for modeling internet images, tags, and their semantics. Int J Comput Vis 106 (2):210–233

    Article  Google Scholar 

  13. Gupta A, Kembhavi A, Davis LS (2009) Observing human-object interactions: Using spatial and functional compatibility for recognition. IEEE Trans Pattern Anal Mach Intell 31(10):1775–1789

    Article  Google Scholar 

  14. Han Y, Wu F, Tao D, Shao J, Zhuang Y, Jiang J (2012) Sparse unsupervised dimensionality reduction for multiple view data. IEEE Trans Circuits Syst Video Technol 22(10):1485–1496

    Article  Google Scholar 

  15. Han Y, Zhang J, Xu Z, Yu SI (2013) Discriminative multi-task feature selection. In: AAAI, pp 41–43

  16. Han Y, Yang Y, Wu F, Hong R (2015) Compact and discriminative descriptor inference using multi-cues. IEEE Trans Image Process 24(12):5114–5126

    Article  MathSciNet  Google Scholar 

  17. Han Y, Yang Y, Yan Y, Ma Z, Sebe N, Zhou X (2015) Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans Neural Netw Learn Syst 26(2):252–264

    Article  MathSciNet  Google Scholar 

  18. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: An overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  Google Scholar 

  19. Huiskes MJ, Lew MS (2008) The mir flickr retrieval evaluation. In: Proceedings of the ACM international conference on multimedia information retrieval. ACM, pp 39–43

  20. Ikizler N, Cinbis RG, Pehlivan S, Duygulu P (2008) Recognizing actions from still images. In: International conference on pattern recognition. IEEE, pp 8–11

  21. Jin X, Zhuang F, Wang S, He Q, Shi Z (2013) Shared structure learning for multiple tasks with multiple views. In: Machine learning and knowledge discovery in databases. Springer, pp 353–368

  22. Kan M, Shan S, Zhang H, Lao S, Chen X (2012) Multi-view discriminant analysis. In: ECCV, Springer, pp 808–821

    Chapter  Google Scholar 

  23. Li H, Wang M, Hua XS (2009) Msra-mm 2.0: A large-scale web multimedia dataset. In: IEEE international conference on data mining workshops (ICDMW), IEEE, pp 164–169

  24. Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the conference on uncertainty in artificial intelligence. AUAI Press, pp 339–348

  25. Liu Y, Nie F, Wu J, Chen L (2013) Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105:12–18

    Article  Google Scholar 

  26. Liu Y, Liao B, Han Y (2015) Discriminative multi-view feature selection and fusion. In: ICME, pp 1–6

  27. Loui A, Luo J, Chang SF, Ellis D, Jiang W, Kennedy L, Lee K, Yanagawa A (2007) Kodak’s consumer video benchmark data set: concept definition and annotation. In: Proceedings of the international workshop on multimedia information retrieval. ACM, pp 245–254

  28. Ma Z, Yang Y, Nie F, Uijlings J, Sebe N (2011) Exploiting the entire feature space with sparsity for automatic image annotation. In: Proceedings of the ACM international conference on multimedia. ACM, pp 283–292

  29. Nie F, Huang H, Cai X, Ding CH (2010) Efficient and robust feature selection via joint 2, 1-norms minimization. In: Advances in neural information processing systems, pp 1813–1821

  30. Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua TS (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. In: Proceedings of the ACM international conference on multimedia. ACM, pp 591–600

  31. Nie L, Song X, Chua TS (2016) Learning from multiple social networks. Morgan & Claypool, San Rafael

    Book  Google Scholar 

  32. Parameswaran S, Weinberger KQ (2010) Large margin multi-task metric learning. In: Advances in neural information processing systems, pp 1867–1875

  33. Peng Y, Zhai X, Zhao Y, Huang X (2016) Semi-supervised cross-media feature learning with unified patch graph regularization. IEEE Trans Circuits Syst Video Technol 26(3):583–596

    Article  Google Scholar 

  34. Sharma A, Kumar A, Daume H, Jacobs DW (2012) Generalized multiview analysis: A discriminative latent space. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2160–2167

  35. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2016) A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing 214:866–880

    Article  Google Scholar 

  36. Song X, Nie L, Zhang L, Liu M, Chua TS (2015) Interest inference via structure-constrained multi-source multi-task learning. In: International joint conference on artificial intelligence (IJCAI), pp 2371–2377

  37. Wang D, Nie F, Huang H (2014) Unsupervised feature selection via unified trace ratio formulation and k-means clustering (track). In: Machine learning and knowledge discovery in databases. Springer, pp 306–321

  38. Wang H, Yan S, Xu D, Tang X, Huang T (2007) Trace ratio vs. ratio trace for dimensionality reduction. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–8

  39. Wen X, Shao L, Fang W, Xue Y (2015) Efficient feature selection and classification for vehicle detection. IEEE Trans Circuits Syst Video Technol 25 (3):508–517

    Article  Google Scholar 

  40. Wu M, Schölkopf B (2006) A local learning approach for clustering. In: Advances in neural information processing systems, pp 1529–1536

  41. Wu X, Yu K, Ding W, Wang H, Zhu X (2013) Online feature selection with streaming features. IEEE Trans Pattern Anal Mach Intell 35(5):1178–1192

    Article  Google Scholar 

  42. Xia T, Tao D, Mei T, Zhang Y (2010) Multiview spectral embedding. IEEE Trans Syst Man Cybern B Cybern 40(6):1438–1446

    Article  Google Scholar 

  43. Xie L, Zhu L, Cheng Z (2017) Multi-task multi-modal semantic hashing for web image retrieval with limited supervision. In: International conference on multimedia modeling. Springer, pp 465–477

  44. Yang Y, Shen HT, Ma Z, Huang Z, Zhou X (2011) l2, 1-norm regularized discriminative feature selection for unsupervised learning. In: International joint conference on artificial intelligence (IJCAI), Citeseer, vol 22, pp 1589–1594

  45. Yang Y, Shen HT, Nie F, Ji R, Zhou X (2011) Nonnegative spectral clustering with discriminative regularization. In: AAAI, pp 555–560

  46. Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723–742

    Article  Google Scholar 

  47. Yang Y, Ma Z, Hauptmann A G, Sebe N (2013) Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Trans Multimedia 15(3):661–669

    Article  Google Scholar 

  48. Yang Y, Song J, Huang Z, Ma Z, Sebe N, Hauptmann A G (2013) Multi-feature fusion via hierarchical regression for multimedia analysis. IEEE Trans Multimedia 15(3):572–581

    Article  Google Scholar 

  49. Yao B, Fei-Fei L (2010) Grouplet: A structured image representation for recognizing human and object interactions. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 9–16

  50. Zhang X, Hu W, Bao H, Maybank S (2013) Robust head tracking based on multiple cues fusion in the kernel-bayesian framework. IEEE Trans Circuits Syst Video Technol 23(7):1197–1208

    Article  Google Scholar 

  51. Zhao H, Wang Z, Nie F (2016) Orthogonal least squares regression for feature extraction. Neurocomputing 216:200–207

    Article  Google Scholar 

  52. Zhao Z, Liu H (2007) Semi-supervised feature selection via spectral analysis. In: SDM, SIAM, pp 641–646

  53. Zhou ZH, Zhang ML, Huang SJ, Li YF (2012) Multi-instance multi-label learning. Artif Intell 176(1):2291–2320

    Article  MathSciNet  Google Scholar 

  54. Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29 (2):472–486

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC (under Grant U1509206,61472276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, H., Han, Y. et al. Discriminative multi-task multi-view feature selection and fusion for multimedia analysis. Multimed Tools Appl 77, 3431–3453 (2018). https://doi.org/10.1007/s11042-017-5165-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5165-0

Keywords

Navigation