Abstract
Object tracking is one of the most important components in numerous applications of computer vision. However, it still has many challenges to be solved, such as occlusion, matching, data association, etc. In this paper, we proposed to utilize slow feature analysis (SFA) method to handle the multiple person tracking problem. First, the part-based model is utilized to detect pedestrian in each frame. Then, a set of reliable tracklets is generated by utilizing spatial-temporal information of detection results. Third, SFA method is leveraged to extract slow-feature for these reliable tracklets. Finally, the traditional graph matching method is utilized to handle data association problem and consequently generate the final trajectory for individual tracking object. Some popular datasets are used in this study. The extensive comparison experiments demonstrate the superiority of the proposed method.



Similar content being viewed by others
References
Bae SH, Yoon K-J (2014) Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. CVPR, pp 1218–1225
Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632
Bazzani L, Cristani M, Murino V (2012) Decentralized particle filter for joint individual-group tracking. In: CVPR, pp 1886–1893
Benfold B, Reid ID (2011) Stable multi-target tracking in real-time surveillance video. In: The 24th IEEE conference on computer vision and pattern recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011, pp 3457–3464
Benfold B, Reid I (2011) Stable multi-target tracking in real-time surveillance video. In: CVPR, pp 3457–3464
Chang X, Yang Y (2016) Semi-supervised feature analysis by mining correlations among multiple tasks. In: IEEE transactions on neural networks and learning systems (99), pp 1–12
Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920
Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybernetics 47(5):1180–1197
Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learning Syst 27(7):1502–1513
Chang X, Yu Y, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632
Felzenszwalb PF, McAllester DA, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE computer society conference on computer vision and pattern recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA. https://doi.org/10.1109/CVPR.2008.4587597
Fisher RB (2004) Pets04 surveillance ground truth data set. In: Sixth IEEE international workshop on performance evaluation of tracking and surveillance, pp 3457–3464
Gall J, Lempitsky VS (2009) Class-specific Hough forests for object detection. CVPR, pp 1022–1029
Gao Y, Dai Q, Wang M, Zhang N (2011) 3d model retrieval using weighted bipartite graph matching. Signal Process Image Commun 26(1):39–47
Gorur P, Amrutur B (2011) Speeded up gaussian mixture model algorithm for background subtraction. In: AVSS, pp 386–391
Granstrom K, Lundquist C (2013) On the use of multiple measurement models for extended target tracking. In: 2013 16th international conference on information fusion (FUSION), pp 1534–1541
Granström K, Orguner U (2012) A phd filter for tracking multiple extended targets using random matrices. IEEE Trans Signal Process 60(11):5657–5671
Han Z, Ye Q, Jiao J (2008) Online feature evaluation for object tracking using kalman filter. In: ICPR, pp 1–4
Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422
Kwon J, Lee KM (2010) Visual tracking decomposition. CVPR, pp 1269–1276
Leal-Taixé L, Pons-Moll G, Rosenhahn B (2011) Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshops, pp 120–127
Li Z, Yabuta K, Kitazawa H (2010) Exclusive block matching for moving object extraction and tracking. Ieice Transactions on Information & Systems 93(5):1263–1271
Liu A, Nie W, Gao Y, Su Y (2016) Multi-modal clique-graph matching for view-based 3d model retrieval. IEEE Trans. Image Process. 25(5):2103–2116
Liu A, Su Y, Jia P-P, Gao Z, Hao T, Yang Z (2015) Multipe/single-view human action recognition via part-induced multitask structural learning. IEEE Trans Cybernetics 45(6):1194–1208
Liu A, Su Y, Nie W, Kankanhalli MS (2017) Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans Pattern Anal Mach Intell 39(1):102–114
Luo C, Cai X, Zhang J (2008) Robust object tracking using the particle filtering and level set methods: a comparative experiment. In: IEEE workshop on multimedia signal processing, pp 359–364
Makris A, Prieur C (2014) Bayesian multiple-hypothesis tracking of merging and splitting targets. IEEE Trans Geosci Remote Sens 52(12):7684–7694
Marcenaro L, Morerio P, Regazzoni CS (2012) Performance evaluation of multi-camera visual tracking. In: Ninth IEEE international conference on advanced video and signal-based surveillance, AVSS 2012. Beijing, China, September 18-21, 2012, pp 464–469
Nie W, Liu A, Su Y (2012) Multiple person tracking by spatiotemporal tracklet association. In: AVSS, pp 481–486
Nie W, Liu A, Su Y, Luan H-B, Yang Z, Cao L, Ji R (2014) Single/cross-camera multiple-person tracking by graph matching. Neurocomputing 139:220–232
Nie W, Liu A, Su Y, Wei S (2017) Multi-view feature extraction based on slow feature analysis. Neurocomputing 252:49–57
Oja E (1982) Simplified neuron model as a principal component analyzer. J Math Biol 15(3):267–273
Oja E (1992) Principal components, minor components, and linear neural networks. Neural Netw 5(6):927–935
Ottlik A, Nagel HH (2008) Initialization of model-based vehicle tracking in video sequences of inner-city intersections. Int J Comput Vis 80(2):211–225
Pellegrini S, Ess A, Van Gool LJ (2010) Improving data association by joint modeling of pedestrian trajectories and groupings. In: ECCV (1), pp 452–465
Peng D, Yi Z, Luo W (2007) Convergence analysis of a simple minor component analysis algorithm. Neural Netw 20(7):842–850
Perez P, Vermaak J, Blake A (2004) Data fusion for visual tracking with particles. Proc IEEE 92(3):495–513
Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99
Schmidhuber J, Prelinger D (1993) Discovering predictable classifications. Neural Comput 5(4):625– 635
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229
Shu G, Dehghan A, Oreifej O, Hand E, Shah M (2012) Part-based multiple-person tracking with partial occlusion handling. In: CVPR, pp 1815–1821
Tu J, Tao H, Huang TS (2006) Online updating appearance generative mixture model for meanshift tracking. In: ACCV (1), pp 694–703
Wen L, Lei Z, Lyu S, Li SZ, Yang M-H (2016) Exploiting hierarchical dense structures on hypergraphs for multi-object tracking. IEEE Trans Pattern Anal Mach Intell 38(10):1983–1996. https://doi.org/10.1109/TPAMI.2015.2509979
Weng M, Huang G, Da X (2010) A new interframe difference algorithm for moving target detection. In: 2010 3rd international congress on image and signal processing (CISP), pp 285–289
Weng J, Zhang Y, Hwang W-S (2003) Candid covariance-free incremental principal component analysis. IEEE Trans Pattern Anal Mach Intell 25(8):1034–1040
Yamaguchi K, Berg AC, Ortiz LE, Berg TL (2011) Who are you with and where are you going?. In: CVPR, pp 1345–1352
Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. In: CVPR
Zhang Y, Weng J (2001) Convergence analysis of complementary candid incremental principal component analysis. Michigan State University
Zhu L, Zhou J, Song J (2008) Tracking multiple objects through occlusion with online sampling and position estimation. Pattern Recogn 41(8):2447–2460
Acknowledgment
This work was supported by the National High-Tech Research and Development Program of China (program 863, 2012AA10A401), the Grants of the Major State Basic Research Development Program of China (program 973, 2012CB114405), the National Key Technology R&D Program (2011BAD13B07 and 2011BAD13B04), the National Natural Science Foundation of China (31770904, 21106095), the Natural Science Foundation of Tianjin (15JCYBJC30700), the project of introducing one thousand high level talents in three years (5KQM110003), the Foundation for Introducing Talents to Tianjin Normal University (5RL123), the Academic Innovation Promotion Project of Tianjin Normal University for young teachers (52XC1403), the 131 Innovative Talents Cultivation of Tianjin (ZX110170) and Tianjin Normal University Application and Development Program (52XK1502).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hao, T., Wang, Q., Wu, D. et al. Multiple person tracking based on slow feature analysis. Multimed Tools Appl 77, 3623–3637 (2018). https://doi.org/10.1007/s11042-017-5218-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-5218-4