Skip to main content
Log in

CASP: context-aware stress prediction system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a mobile-based context-aware acute stress prediction system (CASP) that predicts a user’s stress status based on their current contextual data. The system consists of a context-aware stress prediction algorithm, and an early stage stress intervention method. In the learning phase, the context-aware stress detection algorithm uses ECG signals to identify the user’s stress status. With the aid of machine learning algorithms and cloud computing services, the stress prediction algorithm produces adaptive and personalized prediction models based on the user’s context gathered from their smartphone. The prediction models are able to adapt the changing nature of both the user’s stress status and the surrounding environment. Our evaluation results show that the CASP system is able to predict the stress status of a user using the current contextual data with an average accuracy of 78.3% as measured from ground truth data collected using biofeedback sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.stress.org

References

  1. Ahmed MU (2010) A case-based multi-modal clinical system for stress management. Mälardalen University, PhD thesis

    Google Scholar 

  2. Al-Aidaroos K, Bakar AA, Othman Z (2012) Medical data classification with naive bayes approach. Inf Technol J 11(9):1166

    Article  Google Scholar 

  3. Al Osman H, Eid M, El Saddik A (2014) U-biofeedback: a multimedia-based reference model for ubiquitous biofeedback systems. Multimedia tools and applications 72(3):3143–3168

    Article  Google Scholar 

  4. Alam MGR, Cho EJ, Huh EN, Hong CS (2014) Cloud based mental state monitoring system for suicide risk reconnaissance using wearable bio-sensors. In: Proceedings of the 8th international conference on ubiquitous information management and communication. ACM IMCOM, Siem Reap, p 56

  5. Bernardi L, Wdowczyk-Szulc J, Valenti C, Castoldi S, Passino C, Spadacini G, Sleight P (2000) Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Am Coll Cardiol 35(6):1462–1469

    Article  Google Scholar 

  6. Burns MN, Begale M, Duffecy J, Gergle D, Karr CJ, Giangrande E, Mohr DC (2011) Harnessing context sensing to develop a mobile intervention for depression. J Med Internet Res 13(3):e55

    Article  Google Scholar 

  7. Cohen S, Kessler RC, Gordon LU (1995) Measuring stress: a guide for health and social scientists New York, NY. Oxford University Press on Demand, Oxford

    Google Scholar 

  8. Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. Jama 298(14):1685–1687

    Article  Google Scholar 

  9. Colombo R, Mazzuero G, Soffiantino F, Ardizzoia M, Minuco G (1989) A comprehensive pc solution to heart rate variability analysis in mental stress. In: Proceedings in IEEE computers cardiology, pp 475–478

  10. Demirkan H (2013) A smart healthcare systems framework. IT Prof 15(5):38–45

    Article  Google Scholar 

  11. Elliott GR, Eisdorfer C (1982) Stress and human health: an analysis and implications of research. A study by the Institute of Medicine, National Academy of Sciences. Springer Publishing, New York

    Google Scholar 

  12. Franco C, Fleury A, Guméry P-Y, Diot B, Demongeot J, Vuillerme N (2013) ibalance-abf: a smartphone-based audio-biofeedback balance system. IEEE Trans Biomed Eng 60(1):211–215

    Article  Google Scholar 

  13. Gritti I, Defendi S, Mauri C, Banfi G, Duca P, Roi GS et al (2013) Heart rate variability, standard of measurement, physiological interpretation and clinical use in mountain marathon runners during sleep and after acclimatization at 3480 m. Journal of Behavioral and Brain Science 3(01):26

    Article  Google Scholar 

  14. Haward LR (1960) The subjective meaning of stress. Psychol Psychother Theory Res Pract 33(3):185–194

    Google Scholar 

  15. Hjortskov N, Rissén D, Blangsted AK, Fallentin N, Lundberg U, Søgaard K (2004) The effect of mental stress on heart rate variability and blood pressure during computer work. Eur J Appl Physiol 92(1-2):84–89

    Article  Google Scholar 

  16. Hossain MS (2015) Cloud-supported cyber–physical localization framework for patients monitoring. IEEE Systems Journal

  17. Hossain MS (2016) Patient state recognition system for healthcare using speech and facial expressions. J Med Syst 40(12):272

    Article  Google Scholar 

  18. Hossain MS, Muhammad G (2016) Cloud-assisted industrial internet of things (iiot)–enabled framework for health monitoring. Comput Netw 101:192–202

    Article  Google Scholar 

  19. Hossain MS, Muhammad G (2016) Healthcare big data voice pathology assessment framework. IEEE Access 4:7806–7815

    Article  Google Scholar 

  20. Hu L, Qiu M, Song J, Hossain MS, Ghoneim A (2015) Software defined healthcare networks. IEEE Wirel Commun 22(6):67–75

    Article  Google Scholar 

  21. Hu Y, Duan K, Zhang Y, Hossain MS, Rahman SMM, Alelaiwi A (2016) Simultaneously aided diagnosis model for outpatient departments via healthcare big data analytics. Multimed Tools Appl 1–15. https://doi.org/10.1007/s11042-016-3719-1

    Article  Google Scholar 

  22. Kocielnik R, Sidorova N (2015) Personalized stress management: enabling stress monitoring with lifelogexplorer. KI-Künstliche Intelligenz 29(2):115–122

    Article  Google Scholar 

  23. Kononenko I (1993) Inductive and bayesian learning in medical diagnosis. Applied Artificial Intelligence an International Journal 7(4):317–337

    Article  Google Scholar 

  24. MacLean D, Roseway A, Czerwinski M (2013) Moodwings: a wearable biofeedback device for real-time stress intervention. In: Proceedings of the 6th international conference on pervasive technologies related to assistive environments, vol 66. ACM, New York , p 66

  25. Malliani A, Lombardi F, Pagani M (1994) Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. Br Heart J 71(1):1

    Article  Google Scholar 

  26. Matteson MT, Ivancevich JM (1987) Controlling work stress: Effective human resource and management strategies. Jossey-Bass

  27. McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2):174–185

    Article  Google Scholar 

  28. Merilahti J, Mattila E, Plomp J, Laine K, Korhonen I (2009) Short-term relaxation responses to a voice-guided mobile phone relaxation application and self-guided relaxation. In: Proceedings of the IEEE 9th international conference of information technology and applications in biomedicine (ITAB2009), pp 1–5

  29. Miller NE (1975) Clinical applications of biofeedback: Voluntary control of heart rate, rhythm, and blood pressure. In: New horizons in cardiovascular practice, pp 239–249

  30. Mohr DC, Burns MN, Schueller SM, Clarke G, Klinkman M (2013) Behavioral intervention technologies: evidence review and recommendations for future research in mental health. Gen Hosp Psychiatry 35(4):332–338

    Article  Google Scholar 

  31. Moleiro MA, Cid FV (2001) Effects of biofeedback training on voluntary heart rate control during dynamic exercise. Appl Psychophysiol Biofeedback 26(4):279–292

    Article  Google Scholar 

  32. Pantelopoulos A, Bourbakis N (2008) A survey on wearable biosensor systems for health monitoring. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society(EMBS) conference, pp 4887–4890

  33. Pejovic V, Mehrotra A, Musolesi M (2017) Anticipation mobile digital health: Towards personalized proactive therapies and prevention strategies. In: Anticipation and medicine. Springer, Berlin, pp 253–267

    Google Scholar 

  34. Peternel K, Pogacnik M, Tavcar R, Kos A (2012) A presence-based context-aware chronic stress recognition system. Sensors 12(11):15888–15906

    Article  Google Scholar 

  35. Phuong NH, Kreinovich V (2001) Fuzzy logic and its applications in medicine. Int J Med Inform 62(2):165–173

    Article  Google Scholar 

  36. Satchwell B, et al. (2015) Mobile heart health. Australas Biotechnol 25(1):18

    Google Scholar 

  37. Singh M, Queyam AB (2013) A novel method of stress detection using physiological measurements of automobile drivers. Int J Electr Eng 5(2):13–20

    Google Scholar 

  38. Solanas A, Patsakis C, Conti M, Vlachos IS, Ramos V, Falcone F, Postolache O, Pérez-Martínez PA, Di Pietro R, Perrea DN et al (2014) Smart health: a context-aware health paradigm within smart cities. IEEE Commun Mag 52(8):74–81

    Article  Google Scholar 

  39. Strauss J, Peguero AM, Hirst G (2013) Machine learning methods for clinical forms analysis in mental health. In: MedInfo, p 1024

  40. Sun F-T, Kuo C, Cheng H-T, Buthpitiya S, Collins P, Griss M (2010) Activity-aware mental stress detection using physiological sensors. In: Proceedings of the international conference on mobile computing, applications, and services(MobiCASE). Springer, Berlin, pp 211–230

    Google Scholar 

  41. Xu B, Xu L, Cai H, Jiang L, Luo Y, Gu Y (2017) The design of an m-health monitoring system based on a cloud computing platform. Int J Enterp Inf Syst 11(1):17–36

    Article  Google Scholar 

  42. Zhang J, Tang H, Chen D, Zhang Q (2012) destress: mobile and remote stress monitoring, alleviation, and management platform. In: Proceedings of the IEEE global communications conference (GLOBECOM), pp 2036–2041

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raneem Alharthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, R., Alharthi, R., Guthier, B. et al. CASP: context-aware stress prediction system. Multimed Tools Appl 78, 9011–9031 (2019). https://doi.org/10.1007/s11042-017-5246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5246-0

Keywords

Navigation