Skip to main content
Log in

Detection of Plaque in Coronary Artery in CMRI Images and 3D Visualization of Blood Flow

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Detection of blocks in coronary arteries is becoming crucial interest for early detection of heart attacks. In this paper we propose a framework for detection of plaque in coronary arteries from cardio vascular magnetic resonance imaging(CMRI). It is a quantitative tool for the assessment of cardiovascular diseases. First, select a region of interest and segment the region of coronary artery using enhanced region based active contour (ERAC). Secondly the centreline extraction and lumen segmentation are integrated to extract the artery centreline using geometric moments and the vessel direction using Hessian matrix and segment the vessel lumen in each slice using ERAC. A boundary searching method is adapted to fine tune the segmented surface in each slice of CMRI image. Third, the soft plaques in the coronary artery are extracted by thresholding the segmented region. Finally a 3D visualization of blood flow in coronary artery is presented and the volume of blood flow is calculated. In the experiments we have employed 22 datasets of CMRI images. The experimental results show an average accuracy of 97.6% and with a mean and standard deviation of false discovery rate of 2.48 ± 0.002.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bouraoui B, Ronse C, Baruthio J, Passat N, Germain P (2008) Fully automatic 3D segmentation of coronary arteries based on mathematical morphology. In: IEEE international symposium biomedical imaging: from nano to macro (ISBI) 1059–1062

  2. Canny J (1986) A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  3. Cootes TF, Beeston C, Edwards GJ, Taylor CJ (1999) A Unified framework for atlas matching using active appearance models. IPMI'99, LNCS vol 1613, pp 322–333

  4. Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749

    Article  Google Scholar 

  5. Fang L, Li S, Kang X, Benediktsson JA (2015) Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model. IEEE Trans Geosci Remote Sens 53(8):4186–4201

    Article  Google Scholar 

  6. Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S (2017) Automatic Segmentation of Nine Retinal Layer Boundaries in OCT Images of Non-exudative AMD Patients using Deep Learning and Graph Search. Biomed Opt Express 8(5):2732–2744

    Article  Google Scholar 

  7. Felkel P, Wegenkittl R, Kanitsar A (2001) Vessel Tracking in Peripheral CTA Datasets - An Overview. Spring Conference on Computer Graphics - SC-CCG'01, pp 232–239

  8. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proceedings of medical image comput assisted intervention (MICCAI). Lecture notes in computer science vol 1496, pp 130–137

  9. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multi-scale Vessel Enhancement Filtering. MICCAI'98, LNCS vol 1496, pp 130–137

  10. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object threedimension statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21(9):1151–1166

    Article  Google Scholar 

  11. Gonzalez RC, Woods RE (2002) Digital Signal Processing, Second Edition. Prentice Hall, Upper Saddle River

  12. Jiji GW (2013) Segmentation of Blood Vessels and 3D Representation of CMR Image. J Inst Eng (India) Series B 94(2):115–121

    Article  Google Scholar 

  13. Jiji GW (2015) Analysis of lesions in multiple sclerosis using image processing techniques. Int J Biomed Eng Technol 19(2):118–132

  14. Koller TM, Gerig G, Szekely G, Dettwiler D (1995) Multiscale detection of curvilinear structures in 2-D and 3-D image data. In: Proc. 5th Int. Comput. Vis. Conf., pp 864–869

  15. Lorenzo-Valdes M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D (2002) Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Proc. MICCAI, pp 642–650

  16. Mitchell SC, Bosch JG, Lelieveldt BPF, van der Geest RJ, Reiber JHC, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178

    Article  Google Scholar 

  17. Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  18. Perperidis D, Mohiaddin R, Rueckert D (2005) Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Proc. MICCAI, pp 402–410

  19. Tek H, Gulsun M, Laguitton S, Grady L, Lesage D, Funka-Lea G (2008) Automatic coronary tree modeling. The Midas Journal—2008 MICCAI Workshop Grand Challenge Coronary Artery Tracking. Dec 2010

  20. Verdonck B, Block I, Maitre H, Vandermeulen D, Suetens P, Marchal G (1996) Accurate Segmentation of Blood Vessels From 3D Medical Images. IEEE ICIP, pp 311–314

  21. Wang C, Smedby O (2008) An automatic seeding method for coronary artery segmentation and skeletonization in CTA. The Midas Journal—2008 MICCAI Workshop Grand Challenge Coronary Artery Tracking. http://hdl.handle.net/10380/1434. Accessed 9 Dec 2010

  22. Wink O, Niessen WJ, Viergever MA (2000) Fast Delineation and Visualization of Vessels in 3-D Angiographic Image. IEEE Trans Med Imag 19:337–346

    Article  Google Scholar 

  23. Xie X, Livermore C (2016) A pivot-hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach. Micro Electro Mechanical Systems (MEMS), IEEE 29th International Conference, 24–28 Jan 2016

  24. Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane mems actuators Micro Electro Mechanical Systems (MEMS). IEEE 30th International Conference, 22–26 Jan 2017

  25. Xie X, Zaitsev Y, Velásquez-García LF, Teller SJ, Livermore C (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014

    Article  Google Scholar 

  26. Xie X, Zaitsev Y, Velasquez-Garcia L, Teller S, Livermore C (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. In: Proc. of Solid-State Sensors, Actuators, and Microsystems Workshop, pp 127–130

  27. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369. https://doi.org/10.1109/83.661186

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan C, Zhang Y, Dai F, Li L (2013) Highly Parallel Framework for HEVC Motion Estimation on Many-Core Platform. Data Compression Conference (DCC), 2013, Date of Conference, 20–22 March 2013

  29. Yan C, Zhang Y, Xu J, Dai F, Liang L, Dai Q, Wu F (2014) A Highly Parallel Framework for HEVC Coding Unit Partitioning Tree Decision on Many-core Processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  30. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient Parallel Framework for HEVC Motion Estimation on Many-Core Processors, Circuits and Systems for Video Technology IEEE Transactions on, vol 24, pp 2077–2089, ISSN 1051–8215

  31. Yan C, Zhang Y, Dai F, Wang X, Liang L, Dai Q (2014) Parallel deblocking filter for HEVC on many-core processor. Electron Lett 50(5):367–368

    Article  Google Scholar 

  32. Yan C, Zhang Y, Dai F, Zhang J, Li L, Dai Q (2014) Efficient parallel HEVC intra-prediction on many-core processor. Electron Lett 50(11):805–806

    Article  Google Scholar 

  33. Zambal S, Hladuvka J, Kanitsar A, Buhler K (2008) Shape and appearance models for automatic coronary artery tracking. The Midas Journal—2008 MICCAI Workshop Grand Challenge Coronary Artery Tracking Dec 2010

  34. Zhuang X, Ourselin S, Razavi R, Hill DLG, Hawkes DJ (2008) Automatic whole heart segmentation based on atlas Propagation with A priori Ntomical Information. In: Proc. Medical Image Understanding and Analysis, pp 29–33

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Jainish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jainish, G.R., Jiji, G.W. & Infant, P.A. Detection of Plaque in Coronary Artery in CMRI Images and 3D Visualization of Blood Flow. Multimed Tools Appl 77, 16965–16984 (2018). https://doi.org/10.1007/s11042-017-5265-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5265-x

Keywords