Skip to main content
Log in

Synthesis K-SVD based analysis dictionary learning for pattern classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the fields of computer vision and pattern recognition, dictionary learning techniques have been widely applied. In classification tasks, synthesis dictionary learning is usually time-consuming during the classification stage because of the sparse reconstruction procedure. Analysis dictionary learning, which is another research line, is more favorable due to its flexible representative ability and low classification complexity. In this paper, we propose a novel discriminative analysis dictionary learning method to enhance classification performance. Particularly, we incorporate a linear classifier and the supervised information into the traditional analysis dictionary learning framework by adding a discrimination error term. A synthesis K-SVD based algorithm which can effectively constrain the sparsity is presented to solve the proposed model. Extensive comparison experiments on benchmark databases validate the satisfactory performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.umiacs.umd.edu/~zhuolin/projectlcksvd.html.

  2. http://www.cse.buffalo.edu/~jcorso/r/actionbank.

References

  1. Aharon M, Elad M, Bruckstein AK (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Bahrampour S, Nasrabadi N, Ray A, Jenkins W (2016) Multimodal task-driven dictionary learning for image classification. IEEE Trans Image Process 25(1):24

    Article  MathSciNet  Google Scholar 

  3. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27

    Article  Google Scholar 

  4. Corso JJ (2012) Action bank: a high-level representation of activity in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1234–1241

  5. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  6. Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664

    Article  Google Scholar 

  7. Li F, Rob F, Pietro P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Article  Google Scholar 

  8. Li Y, Guo Y, Guo J, Li M, Kong X (2015) CRF With locality-consistent dictionary learning for semantic segmentation. In: Third IAPR asian conference pattern recognition, ACPR 2015. Kuala Lumpur, Malaysia, pp 509–513

  9. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI. Buenos Aires, Argentina, pp 1617–1623

  10. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix, Arizona, USA, pp 1266–1272

  11. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  12. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix, Arizona, USA, pp 201–207

  13. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI. New York, NY, USA, pp 2576–2581

  14. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76(8):10,701–10,719

    Article  Google Scholar 

  15. Mairal J, Bach FR, Ponce J, Sapiro G, Zisserman A (2008) Discriminative learned dictionaries for local image analysis. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR 2008). Anchorage, Alaska, USA

  16. Martinez A, Benavente R (1998) The AR face database. CVC Tech Rep 24

  17. Nam S, Davies ME, Elad M, Gribonval R (2013) The cosparse analysis model and algorithms. Appl Computat Harmon Anal 34(1):30–56

    Article  MathSciNet  MATH  Google Scholar 

  18. Preotiuc-Pietro D, Liu Y, Hopkins D, Ungar LH (2017) Beyond binary labels: political ideology prediction of twitter users. In: Proceedings of the 55th annual meeting association computational linguistics, ACL. Vancouver, Canada, pp 729–740

  19. Ravishankar S, Bresler Y (2013) Learning overcomplete sparsifying transforms for signal processing. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing. Vancouver, BC, Canada, pp 3088–3092

  20. Ravishankar S, Bresler Y (2013) Learning sparsifying transforms. IEEE Trans Signal Process 61(5):1072–1086

    Article  MathSciNet  Google Scholar 

  21. Reddy KK, Shah M (2013) Recognizing 50 human action categories of web videos. Mach Vis Applicat 24(5):971–981

    Article  Google Scholar 

  22. Rubinstein R, Elad M (2014) Dictionary learning for analysis-synthesis thresholding. IEEE Trans Signal Process 62(22):5962–5972

    Article  MathSciNet  Google Scholar 

  23. Rubinstein R, Peleg T, Elad M (2013) Analysis k-svd: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Process 61(3):661–677

    Article  MathSciNet  Google Scholar 

  24. Schölkopf B, Platt J, Hofmann T (2006) Sparse representation for signal classification. In: Proceedings of the advances neural information processing systems. Vancouver, British Columbia, Canada, pp 609–616

  25. Shekhar S, Patel VM, Chellappa R (2014) Analysis sparse coding models for image-based classification. In: Proceedings of the IEEE international conference on image processing. Paris, France, pp 5207–5211

  26. Svetlana L, Cordelia S, Jean P (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2. New York, USA, pp 2169–2178

  27. Wang L, Zhang Y, Feng J (2005) On the euclidean distance of images. IEEE Trans Pattern Anal Mach Intell 27(8):1334–1339

    Article  Google Scholar 

  28. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  29. Xu Z, Guo Y, Guo J, Kong X (2015) Hybrid dictionary learning for JPEG steganalysis. In: Asia-pacific signal information process. Association annual summit conference, APSIPA 2015. Hong Kong, pp 711–714

  30. Yang MH, Yang J (2012) Top-down visual saliency via joint crf and dictionary learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2296–2303

  31. Zhang Q, Li B (2010) Discriminative k-svd for dictionary learning in face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. San Francisco, CA, pp 2691–2698

  32. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition?. In: Proceedings of the IEEE international conference on computer vision. Barcelona, Spain, pp 471–478

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant No. 61402079), the Foundation for Innovative Research Groups of the NSFC (Grant No. 71421001), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR, No. 201600022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Guo, Y., Guo, J. et al. Synthesis K-SVD based analysis dictionary learning for pattern classification. Multimed Tools Appl 77, 17023–17041 (2018). https://doi.org/10.1007/s11042-017-5269-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5269-6

Keywords

Navigation