Abstract
This paper proposes a novel spatiotemporal salient object detection method by integrating saliency and objectness, for videos with complicated motion and complex scenes. The initial salient object detection result is first built upon both saliency map and objectness map. Afterwards, the region size of salient object is adjusted to obtain the frame-wise salient object detection result by iteratively updating the object probability map, which is the combination of saliency map and objectness map. Finally, in order to enhance the temporal coherence, the sequence-level refinement is performed to generate the final salient object detection result. Experimental results on public benchmark datasets demonstrate that the proposed method consistently outperforms the state-of-the-art salient object detection methods.






Similar content being viewed by others
References
Bao L, Lu J, Li Y, Shi Y (2015) A saliency detection model using shearlet transform. Multimed Tools Appl 74(11):4045–4058
Bao L, Zhang X, Zheng Y, Li Y (2016) Video saliency detection using 3D shearlet transform. Multimed Tools Appl 75(13):7761–7778
Borji A, Cheng M-M, Jiang H, Li J (2014) Salient Object Detection: A Survey. arXiv preprint arXiv:1411.5878
Borji A, Cheng M-M, Jiang H, Li J (2015) Salient Object Detection: A Benchmark. IEEE Trans Image Process 24(12):5706–5722
Chan AB, Vasconcelos N (2007) Classifying video with kernel dynamic textures. In: Proc. IEEE CVPR, pp. 1–6
Cheng W-H, Wang C-W, Wu J-L (2007) Video adaptation for small display based on content recomposition. IEEE Trans Circ Syst Video Technol 17(1):43–58
Du H, Liu Z, Jiang J, Shen L (2013) Stretchability-aware block scaling for image retargeting. J Vis Commun Image Represent 24(4):499–508
Fang Y, Lin W, Chen Z, Tsai C-M, Lin C-W (2014) A video saliency detection model in compressed domain. IEEE Trans Circ Syst Video Technol 24(1):27–38
Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181
Gopalakrishnan V, Hu Y, Rajan D (2010) Random walks on graphs for salient object detection in images. IEEE Trans Image Process 19(12):3232–3242
Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198
Huang J, Li Z (2009) Image trimming via saliency region detection and iterative feature matching. In: Proc. IEEE ICME, pp. 1322–1325
Ko BC, Nam JY (2006) Object-of-interest image segmentation based on human attention and semantic region clustering. J Opt Soc Am A 23(10):2462–2470
Lampert CH, Blaschko MB, Hofmann T (2009) Efficient subwindow search: A branch and bound framework for object localization. IEEE Trans Patt Anal Mach Intell 31(12):2129–2142
Li J, Liu Z (2015) Object detection based on visual saliency map and objectness. J Comput Appl 35(12):3560–3564
Li Z, Qin S, Itti L (2011) Visual attention guided bit allocation in video compression. Image Vis Comput 29(1):1–14
Li F, Kim T, Humayun A, Tsai D, Rehg JM (2013) Video segmentation by tracking many figure-ground segments. In: Proc. IEEE ICCV, pp. 2192–2199
Li J, Liu Z, Zhang X, Le Meur O, Shen L (2015) Spatiotemporal saliency detection based on superpixel-level trajectory. Signal Process Image Commun 38:100–144
Lin R-S, Liu C-B, Yang M-H, Ahuja N, Levinson S (2006) Learning nonlinear manifolds from time series. Proc. IEEE ECCV, In, pp 245–256
Liu C (2009) Beyond pixels: Exploring new representations and applications for motion analysis. Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA
Liu F, Gleicher M (2005) Automatic image retargeting with fisheye-view warping. In: Proc. ACM Symp. User Interface Software and Technology, pp. 153–162
Liu T, Sun J, Zheng N, Tang X, Shum HY (2007) Learning to detect a salient object. In: Proc. IEEE CVPR, pp. 1–8
Liu Q, Han T, Sun Y, Chu Z, Shen B (2013) A two step salient objects extraction framework based on image segmentation and saliency detection. Multimed Tools Appl 67(1):231–247
Liu Z, Zou W, Le Meur O (2014) Saliency tree: a novel saliency detection framework. IEEE Trans Image Process 23(5):1937–1952
Liu Z, Zhang X, Luo S, Le Meur O (2014) Superpixel-based spatiotemporal saliency detection. IEEE Trans Circ Syst Video Technol 24(9):1522–1540
Liu Z, Li J, Ye L, Sun G, Shen L (2016) Saliency Detection for Unconstrained Videos Using Superpixel-level Graph and Spatiotemporal Propagation. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2016.2595324
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proc. IEEE CVPR, pp. 3431–3440
Luo Y, Yuan J, Xue P, Tian Q (2010) Saliency density maximization for object detection and localization. In: Proc. ACCV, pp. 396–408
Luo Y, Yuan J, Lu J (2016) Finding spatio-temporal salient paths for video objects discovery. J Vis Commun Image Represent 38:45–54
Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proc. ACM Int. Conf. Multimedia, pp. 374–381
Mertsching B, Bollmann M, Hoischen R, Schmalz S (1999) The neural active vision system NAVIS. Handbook Comput Vision Appl 3:543–568
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2017) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832
Perazzi F, Pont-Tuset J, Mc Williams B, Gool LV, Gross M, Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In: Proc. IEEE CVPR, pp. 724–732
Shamir A, Avidan S (2009) Seam carving for media retargeting. Comm ACM 52(1):77–85
Shen L, Liu Z, Zhang Z (2013) A novel H.264 rate control algorithm with consideration of visual attention. Multimed Tools Appl 63(3):709–727
Shi R, Liu Z, Du H, Zhang X, Shen L (2012) Region diversity maximization for salient object detection. IEEE Sign Process Lett 19(4):215–218
Tian Y, Li J, Yu S, Huang T (2015) Learning complementary saliency priors for foreground object segmentation in complex scenes. Int J Comput Vis 111(2):153–170
Valenti R, Sebe N, Gevers T (2009) Image saliency by isocentric curvedness and color. In: Proc. IEEE ICCV, pp. 2185–2192
Wang W, Shen J, Porikli F (2015) Saliency-aware geodesic video object segmentation. In: Proc. IEEE CVPR, pp. 3395–3402
Wang W, Shen J, Shao L (2015) Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans Image Process 24(12):4185–4196
Wu B, Xu L (2014) Integrating bottom-up and top-down visual stimulus for saliency detection in news video. Multimed Tools Appl 73(3):1053–1075
Wu T, Liu Z, Li J (2016) Spatiotemporal saliency detection using border connectivity. In: Eight International Conference on Digital Image Processing, article 1003344
Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Sign Process Lett 21(5):573–576
Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circ Syst Video Technol 24(12):2077–2089
Yan Y, Nie F, Li W, Gao C, Yang Y, Xu D (2016) Image classification by cross-media active learning with privileged information. IEEE Trans Multimed 18(12):2494–2502
Ye L, Liu Z, Li L (2015) Evaluation on fusion of saliency and objectness for salient object segmentation. In: Proc. ICIMCS, pp. 1–4
You X, Guo W, Yu S, Yu S, Li K, Príncipe JC, Tao D (2016) Kernel learning for dynamic texture synthesis. IEEE Trans Image Process 25(10):4782–4795
Yuan Z, Lu T, Huang Y, Wu D, Yu H (2012) Addressing visual consistency in video retargeting: A refined homogeneous approach. IEEE Trans Circ Syst Video Technol. 22(6):890–903
Zitnick CL, Dollár P (2014) Edge boxes: Locating object proposals from edges. In: European Conference on Computer Vision, pp. 391–405
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 61471230 and No. 61601278, and by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, T., Liu, Z., Zhou, X. et al. Spatiotemporal salient object detection by integrating with objectness. Multimed Tools Appl 77, 19481–19498 (2018). https://doi.org/10.1007/s11042-017-5334-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-5334-1