Skip to main content

An advanced fingerprint matching using minutiae-based indirect local features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Biometric systems examine the uniqueness of an individual based on physical and behavioral characteristics. Among the known traits, fingerprint is the most significant biometric trait due to its ease of use and high accuracy. However, the efficiency of the fingerprint matching technique depends on the feature vector it uses. The ideal feature vector should be invariant to several common transformations, which usually a fingerprint capturing system is subjected to. Current work focuses to achieve such an invariance by extracting the features based on the spatial relationship among minutiae points. We propose a minutiae point based 4-dimensional local feature vector, which simultaneously satisfies six desirable feature vector properties. This feature vector definition helps us to deal with problem of missing and spurious minutiae and thus enables us to design a robust authentication system. We have substantiated the efficacy of the proposed approach with the help of a number of fingerprint instances available in FVC and NIST databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abe N, Shinzaki T (2015) Vectorized fingerprint representation using minutiae relation code. In: International conference on biometrics. IEEE, pp 408–415

  2. Barman S, Chattopadhyay S, Samanta D, Bag S, Show G (2014) An efficient fingerprint matching approach based on minutiae to minutiae distance using indexing with effectively lower time complexity. In: International conference on information technolog. IEEE, pp 179–183

  3. Bazen AM, Gerez SH (2002) Achievements and challenges in fingerprint recognition. In: Biometric solutions. Springer, US, pp 23–57

  4. Bazen AM, Verwaaijen GTB, Gerez SH, Veelenturf LPJ, Van Der Zwaag BJ (2000) A correlation-based fingerprint verification system. In: Proceedings of the 11th annual workshop circuits systems and signal processing, pp 205–213

  5. Bebis G, Deaconu T, Georgiopoulos M (1999) Fingerprint identification using delaunay triangulation. In: International conference on information intelligence and systems. IEEE, pp 452–459

  6. Cappelli R, Ferrara M, Maltoni D (2010) Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32(12):2128–2141

    Article  Google Scholar 

  7. Cappelli R, Ferrara M, Maltoni D (2012) Minutiae-based fingerprint matching. Cross disciplinary biometric systems. Springer, Berlin, pp 117–150

    Book  Google Scholar 

  8. Chau A, Soto C (2011) Hybrid algorithm for fingerprint matching using delaunay triangulation and local binary patterns. In: Progress in pattern recognition, image analysis, computer vision, and applications, pp 692–700

  9. Chen W, Gao Y (2007) A minutiae-based fingerprint matching algorithm using phase correlation. In: 9th biennial conference of the australian pattern recognition society on digital image computing techniques and applications. IEEE, pp 233–238

  10. Chen X, Tian J, Yang X, Zhang Y (2006) An algorithm for distorted fingerprint matching based on local triangle feature set. IEEE Trans Inf Forensics Secur 1(2):169–177

    Article  Google Scholar 

  11. Fan L, Wang S, Wang H, Guo T (2008) Singular points detection based on zero-pole model in fingerprint images. IEEE Trans Pattern Anal Mach Intell 30 (6):929–940

    Article  Google Scholar 

  12. Feng Y, Feng J, Chen X, Song Z (2006) A novel fingerprint matching scheme based on local structure compatibility. In: 18th international conference on pattern recognition, vol 4. IEEE, pp 374– 377

  13. Fernandez-Saavedra B, Sanchez-Reillo R, Ros-Gomez R, Liu-Jimenez J (2016) Small fingerprint scanners used in mobile devices: the impact on biometric performance. IET Biom 5(1):28–36

    Article  Google Scholar 

  14. Fingerprint verification competition FVC2000, http://bias.csr.unibo.it/fvc2000/databases.asp (Last Accessed: 30/03/2017)

  15. Fingerprint verification competition FVC2002, http://bias.csr.unibo.it/fvc2002/databases.asp (Last Accessed: 30/03/2017)

  16. Fingerprint verification competition FVC2004, http://bias.csr.unibo.it/fvc2004/databases.asp (Last Accessed: 30/03/2017)

  17. Fisher R, Perkins S, Walker A, Wolfart E http://homepages.inf.ed.ac.uk/rbf/HIPR2/scale.htm (Last Accessed: 30/03/2017)

  18. Hoyle K (2011) Minutiae triplet-based features with extended ridge information for determining sufficiency in fingerprints. Master’s thesis, Virginia Polytechnic Institute and State University

  19. Hrechak AK, McHugh JA (1990) Automated fingerprint recognition using structural matching. Pattern Recogn 23(8):893–904

    Article  Google Scholar 

  20. Jain AK, Hong L, Pankanti S, Bolle R (1997) An identity-authentication system using fingerprints. Proc IEEE 85(9):1365–1388

    Article  Google Scholar 

  21. Jain A, Hong L, Bolle R (1997) On-line fingerprint verification. IEEE Trans Pattern Anal Mach Intell 19(4):302–314

    Article  Google Scholar 

  22. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  23. Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recogn 38(12):2270–2285

    Article  Google Scholar 

  24. Jain A, Chen Y, Demirkus M (2006) Pores and ridges: fingerprint matching using level 3 features. In: International conference on pattern recognition, vol 4. IEEE, pp 477–480

  25. Jain AK, Nandakumar K, Nagar A (2013) Fingerprint template protection: from theory to practice. In: Security and privacy in biometrics. Springer, London, pp 187–214

  26. Jayaraman U, Gupta AK, Gupta P (2014) An efficient minutiae based geometric hashing for fingerprint database. Neurocomputing 137:115–126

    Article  Google Scholar 

  27. Jea T-Y, Govindaraju V (2005) A minutia-based partial fingerprint recognition system. Pattern Recogn 38(10):1672–1684

    Article  Google Scholar 

  28. Jiang X, Yau W-Y (2000) Fingerprint minutiae matching based on the local and global structures. In: 15th international conference on pattern recognition, vol 2. IEEE, pp 1038–1041

  29. Khodadoust J, Khodadoust AM (2017) Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recogn, Elsevier 67:110–126

    Article  Google Scholar 

  30. Li Q, Zhou X, Gu A, Li Z, Liang R-Z (2016) Nuclear norm regularized convolutional Max Pos@ Top machine. Neural Comput Applic 27:1–10

    Google Scholar 

  31. Liang R-Z, Liang G, Li W, Gu Y, Li Q, Wang JJ-Y (2016) Learning convolutional neural network to maximize pos@ top performance measure. arXiv:1609.08417

  32. Liang R-Z, Shi L, Wang H, Meng J, Wang J J-Y, Sun Q, Gu Y (2016) Optimizing top precision performance measure of content-based image retrieval by learning similarity function. In: 23rd international conference on pattern recognition (ICPR). IEEE, pp 2954–2958

  33. Lindoso A, Entrena L, Liu-Jimenez J, San Millan E (2007) Correlation-based fingerprint matching with orientation field alignment. In: Lee SW, Li SZ (eds) Advances in biometrics. ICB 2007. Lecture notes in computer science, vol 4642. Springer, Berlin, Heidelberg

  34. Liu N, Yin Y, Zhang H (2005) A fingerprint matching algorithm based on Delaunay triangulation net. In: The fifth international conference on computer and information technology. IEEE, pp 591– 595

  35. Liu L-M, Huang C-Y, Douglas Hung D C (2008) A directional approach to fingerprint classification. Int J Pattern Recognit Artif Intell 22(2):347–365

    Article  Google Scholar 

  36. Maltoni D, Maio D, Jain A, Prabhakar S (2009) Handbook of fingerprint recognition. Springer Science & Business Media

  37. Medina-Pérez MA, García-Borroto M, Gutierrez-Rodríguez AE, Altamirano-Robles L (2012) Improving fingerprint verification using minutiae triplets. Sensors 12(3):3418–3437

    Article  Google Scholar 

  38. Moon YS, Ho HC, Ng KL, Wan SF, Wong ST (2000) Collaborative fingerprint authentication by smart card and a trusted host. In: Canadian conference on electrical and computer engineering. IEEE, pp 108–112

  39. NBIS Technical POC NIST Biometric image software (NBIS), https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis (Last Accessed: 30/03/2017)

  40. Ratha NK, Karu K, Chen S, Jain AK (1996) A real-time matching system for large fingerprint databases. IEEE Trans Pattern Anal Mach Intell 18(8):799–813

    Article  Google Scholar 

  41. Ravi J, Raja KB, Venugopal KR (2009) Fingerprint recognition using minutia score matching. Int J Eng Sci Technol 1(2):35–42

    Google Scholar 

  42. Reisman J, Uludag U, Ross A (2005) Secure fingerprint matching with external registration. In: International conference on audio-and video-based biometric person authentication. Springer, pp 720– 729

  43. Tiwari K, Gupta P (2015) Indexing fingerprint database with minutiae based coaxial Gaussian track code and quantized lookup table. In: International conference on image processing. IEEE, pp 4773– 4777

  44. Wahab A, Chin SH, Tan EC (1998) Novel approach to automated fingerprint recognition. IEE Proceedings-Vision, Image and Signal Processing 145(3):160–166

    Article  Google Scholar 

  45. Wang X, Xie M (2004) Fingerprint classification: an approach based on singularities and analysis of fingerprint structure. In: Zhang D, Jain AK (eds) Biometric authentication. Lecture notes in computer science, vol 3072. Springer, Berlin, Heidelberg

  46. Wang X, Wang F, Fan J, Wang J (2009) Fingerprint classification based on continuous orientation field and singular points. In: International conference on intelligent computing and intelligent systems, vol 4. IEEE, pp 189–193

  47. Watson C, Flanagan P NIST Special database 4, https://www.nist.gov/srd/nist-special-database-4 (Last Accessed: 30/03/2017)

  48. Weisstein EW Circumradius from mathworld-a wolfram web resource, http://mathworld.wolfram.com/circumradius.html (Last Accessed: 30/03/2017)

  49. Weisstein EW Inradius from mathworld-a wolfram web resource, http://mathworld.wolfram.com/inradius.html (Last Accessed: 30/03/2017)

  50. Xu W, Chen X, Feng J (2007) A robust fingerprint matching approach: growing and fusing of local structures. In: Lee SW, Li SZ (eds) Advances in biometrics. ICB 2007. Lecture notes in computer science, vol 4642. Springer, Berlin, Heidelberg

  51. Yao Z, Le Bars J-M, Charrier C, Rosenberger C (2016) Literature review of fingerprint quality assessment and its evaluation. IET Biom 5(3):243–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauheed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Sarma, M. An advanced fingerprint matching using minutiae-based indirect local features. Multimed Tools Appl 77, 19931–19950 (2018). https://doi.org/10.1007/s11042-017-5444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5444-9

Keywords