Skip to main content
Log in

Computational color constancy from maximal projections mean assumption

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient algorithm for illuminant estimation. The 2D estimator is derived based on the maximal projections’ mean assumption according to which the estimated illuminant in a chromaticity subspace is the vector maximizing the sum of orthogonal projections of image colors. We show that, the illuminant estimation solution is the eigenvector corresponding to the maximal eigenvalue of the inner-product matrix of data. The 2D estimator is extended to the 3D space by minimizing the reconstruction errors from the 2D estimates obtained in the RGB color space. The evaluation of the 3D resulting estimator on three well-known image datasets generates lower estimation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnard K, Martin L, Funt B, Coath A (2002) A data set for color research. Color Res Appl 27(3):147–151

    Article  Google Scholar 

  2. Barrow HG, tenenbaum JM (1978) Recovering intrinsic scene characteristics from images. Computer vision systems

  3. Bianco S, Schettini R (2012) Face-based illuminant estimation. In: European Conference on Computer Vision, pp 623–626. Springer

  4. Brainard DH, Freeman WT (1997) Bayesian color constancy. JOSA A 14 (7):1393–1411

    Article  Google Scholar 

  5. Buchsbaum G (1980) A spatial processor model for object colour perception. Journal of the Franklin institute 310(1):1–26

    Article  Google Scholar 

  6. Cardei VC, Funt B (1999) Committee-based color constancy. In: Color and Imaging Conference, volume 1999, pp 311–313. Society for Imaging Science and Technology

  7. Cardei Vlad C, Funt B, Kobus B (2002) Estimating the scene illumination chromaticity by using a neural network. JOSA A 19(12):2374–2386

    Article  Google Scholar 

  8. Chakrabarti A, Hirakawa K, Zickler T (2008) Color constancy beyond bags of pixels. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR, pp 1–6. IEEE

  9. Ciurea F, Funt B (2003) A large image database for color constancy research. In: CIC, volume 2003, pp 160–164. Society for Imaging Science and Technology

  10. Drew MS, Joze HRV, Finlayson GD (2014) The zeta-image, illuminant estimation, and specularity manipulation. Comput Vis Image Underst 127:1–13

    Article  Google Scholar 

  11. Elkhamssa L, Djemel Z (2016) Computer vision color constancy from maximal projections mean assumption. In: International Conference on Image and Signal Processing, Springer, pp 148–156

  12. Finlayson GD, Schaefer G (2001) Solving for colour constancy using a constrained dichromatic reflection model. IJCV 42(3):127–144

    Article  MATH  Google Scholar 

  13. Finlayson GD, Trezzi E (2004) Shades of gray and colour constancy, pp 37–41

  14. Finlayson GD, Hordley SD, Hubel PM (2001) Color by correlation: A simple, unifying framework for color constancy. IEEE Trans PAMI 23(11):1209–1221

    Article  Google Scholar 

  15. Finlayson GD, Drew MS, Lu C (2004) Intrinsic images by entropy minimization. In: Comp. Vis.-ECCV 2004, pp 582–595. Springer

  16. Finlayson GD, Hordley SD, Tastl I (2006) Gamut constrained illuminant estimation. IJCV 67(1): 93–109

    Article  Google Scholar 

  17. Forsyth DA (1990) A novel algorithm for color constancy. IJCV 5(1):5–35

    Article  Google Scholar 

  18. Funt B, Xiong W (2004) Estimating illumination chromaticity via support vector regression. In: Color and Imaging Conference, volume 2004, pp 47–52. Society for Imaging Science and Technology

  19. Gehler PV, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited. In: IEEE Conference on CVPR, 2008. CVPR 2008, pp 1–8. IEEE

  20. Gijsenij A, Gevers T (2007) Color constancy using natural image statistics. In: CVPR, pp 1–8

  21. Gijsenij A, Gevers T (2011) Color constancy using natural image statistics and scene semantics. IEEE Trans PAMI 33(4):687–698

    Article  Google Scholar 

  22. Gijsenij A, Gevers T, Weijer JVD (2009) Physics-based edge evaluation for improved color constancy. In: CVPR, pp 581–588

  23. Gijsenij A, Gevers T, Weijer JVD (2011) Computational color constancy: Survey and experiments. Im Proc IEEE Trans 20(9):2475–2489

    Article  MathSciNet  MATH  Google Scholar 

  24. Gijsenij A, Rui L, Gevers T (2012) Color constancy for multiple light sources. IEEE Trans Image Process 21(2):697–707

    Article  MathSciNet  MATH  Google Scholar 

  25. Healey G (1989) Using color for geometry-insensitive segmentation. JOSA A 6 (6):920–937

    Article  MathSciNet  Google Scholar 

  26. Healey G (1991) Estimating spectral reflectance using highlights. Image Vis Comput 9(5):333– 337

    Article  Google Scholar 

  27. Hordley SD (2006) Scene illuminant estimation: past, present, and future. Color Res Appl 31(4):303–314

    Article  Google Scholar 

  28. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  29. Jenssen R (2013) Mean vector component analysis for visualization and clustering of nonnegative data. IEEE Trans NNLS 24(10):1553–1564

    Google Scholar 

  30. Joze HRV, Drew MS, Finlayson GD, Rey PAT (2012) The role of bright pixels in illumination estimation. In: CIC, volume, pp 41–46

  31. Kerouh F, Ziou D, Lahmar KN (2016) Content Based Computational chromatic adaptation. In: IVAPP- Lecture notes in Computer Sciences

  32. Land EH (1977) The retinex theory of color vision. Scientific America

  33. Lee HC (1986) Method for computing the scene-illuminant chromaticity from specular highlights. JOSA A 3(10):1694–1699

    Article  Google Scholar 

  34. Lee Hee C, Breneman EJ, Schulte CP (1990) Modeling light reflection for computer color vision. IEEE Trans Pattern Anal Mach Intell 12(4):402–409

    Article  Google Scholar 

  35. MacAdam DL (1956) Chromatic adaptation. JOSA 46(7):500–513

    Article  Google Scholar 

  36. Mazin B, Delon J, Gousseau Y (2015) Estimation of illuminants from projections on the planckian locus. IEEE Trans Image Process 24(6):1944–1955

    Article  MathSciNet  Google Scholar 

  37. Nouha E, Theo G, Arjan G, Jordi G (2014) Color constancy using 3d scene geometry derived from a single image. IEEE Trans Image Process 23(9):3855–3868

    Article  MathSciNet  MATH  Google Scholar 

  38. Pillai U, Suel T, Cha S (2005) The perron-frobenius theorem: some of its applications. IEEE Signal Process Mag 22(2):62–75

    Article  Google Scholar 

  39. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  40. Rosenberg C, Ladsariya A, Minka T (2003) Bayesian color constancy with non-gaussian models. In: Advances in neural information processing systems

  41. Rui L, Gijsenij A, Gevers T, van KEA, de Sande J-MG, Xu D (2009) Color constancy using stage classification. In: ICIP, pp 685–688

  42. Rui L, Gijsenij A, Gevers T, Nedovic V, De X, Geusebroek J-M (2009) Color constancy using 3d scene geometry. In: 2009 IEEE 12th International Conference on Computer Vision, pp 1749–1756. IEEE

  43. Schaefer G (2004) Robust dichromatic colour constancy. In: ICIAR, pp 257–264. Springer

  44. Schaefer G, Hordley S, Finlayson G (2005) A combined physical and statistical approach to colour constancy. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR, volume 1, pp 148–153. IEEE

  45. Shafer SA (1985) Using color to separate reflection components. Color Res Appl 10(4):210–218

    Article  Google Scholar 

  46. Shi L, Funt B (2008) Dichromatic illumination estimation via hough transforms in 3d. In: CGIV, volume, pp 259–262

  47. Shi L, Funt B (2010) Re-processed version of the gehler color constancy dataset of 568 images. Simon Fraser Univ 1(2):3

    Google Scholar 

  48. Simone B, Raimondo S (2014) Adaptive color constancy using faces. IEEE Trans Pattern Anal Mach Intell 36(8):1505–1518

    Article  Google Scholar 

  49. Tominaga S, Wandell BA (1989) Standard surface-reflectance model and illuminant estimation. JOSA A 6(4):576–584

    Article  Google Scholar 

  50. Toro J (2008) Dichromatic illumination estimation without pre-segmentation. Pattern Recognit Lett 29(7):871–877

    Article  Google Scholar 

  51. Vaezi Joze Hamid R, Drew M (2014) Exemplar-based colour constancy and multiple illumination. IEEE Trans Pattern Anal Mach Intell 36(5):860–873

    Article  Google Scholar 

  52. von Kries J (1905) Die gesichtsempfindungen. Handbuch der physiologie des menschen

  53. Weijer JVD, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–2214

    Article  MathSciNet  Google Scholar 

  54. Yoon K-J, Choi Y, Kweon IS (2006) Fast separation of reflection components using a specularity-invariant image representation. In: 2006 International Conference on Image Processing, pp 973–976. IEEE

  55. Yuan X, Xiang F, Wang Z (2013) Improved gamut-constrained illuminant estimation by combining modified category correlation. Opt Rev 20(4):348–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elkhamssa Lakehal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakehal, E., Ziou, D. Computational color constancy from maximal projections mean assumption. Multimed Tools Appl 77, 20501–20517 (2018). https://doi.org/10.1007/s11042-017-5476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5476-1

Keywords

Navigation