Skip to main content

Advertisement

Log in

Evaluating color and texture features for forgery localization from illuminant maps

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Images are widely accepted as a record of events even when images are prone to easy manipulations. It is difficult to identify image alterations by the human visual system. Once an image is identified as forged, the next step is to locate forged regions. Recently, distribution of scene illumination across an image has been analyzed to detect forged images and to locate forged image regions. In this paper, we investigate the problem of locating spliced image region based on illumination inconsistency. We investigated the discriminative power of a number of color and texture descriptors in locating spliced image regions. During digital crime investigations, often it is required to detect the spliced face in a group photo. Here, we have selected forged images containing human facial regions where the regions to be compared are of similar object material, human skin regions. We evaluated various color, texture, and combined color-texture descriptors in an unsupervised manner by comparing the distance between the feature vectors to identify the inconsistent image region. We also investigated the performance of different histogram similarity measures including heuristic histogram distance measures, non-parametric test statistics, information theoretic divergences, and cross-bin measures. Experiments show that the Local Phase Quantization (LPQ) descriptor performs best in identifying the spliced image region from the illuminant map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://ic.unicamp.br/~rocha/pub/downloads/2014-tiago-carvalho-thesis/tifs-database.zip

  2. http://www5.cs.fau.de/research/areas/computer-vision/image-forensics/scene-illumination-as-an-indicator-of-image-manipulation/

  3. http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab

  4. http://www.ee.oulu.fi/~jkannala/bsif/bsif.html

  5. http://sse.tongji.edu.cn/linzhang/BGP/BGP.htm

  6. http://www.comp.polyu.edu.hk/~cslzhang/code/CLBP.rar.

  7. http://cat.cvc.uab.es/~joost/software.html

  8. http://www.cat.uab.cat/Research/ColorTextureDescriptors/

  9. http://koen.me/research/colordescriptors/readme

References

  1. Alvarez S, Vanrell M (2012) Texton theory revisited: a bag-of-words approach to combine textons. Pattern Recogn 45(12):4312–4325

    Article  Google Scholar 

  2. Benavente R, Vanrell M, Baldrich R (2008) Parametric fuzzy sets for automatic color naming. JOSA A 25(10):2582–2593

    Article  Google Scholar 

  3. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, pp 1–4

  4. Bosch A, Zisserman A, Muoz X (2008) Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell 30 (4):712–727. https://doi.org/10.1109/TPAMI.2007.70716

    Article  Google Scholar 

  5. Burghouts GJ, Geusebroek JM (2009) Performance evaluation of local colour invariants. Comput Vis Image Underst 113(1):48–62

    Article  Google Scholar 

  6. Cao G, Zhao Y, Ni R (2008) Image composition detection using object-based color consistency. In: 2008 9Th international conference on signal processing, pp 1186–1189. https://doi.org/10.1109/ICOSP.2008.4697342

  7. Carron T, Lambert P (1994) Color edge detector using jointly hue, saturation and intensity. In: 1994 Proceedings of IEEE international conference on Image processing, ICIP-94, vol 3. IEEE, pp 977–981

  8. Carvalho T, Faria FA, Pedrini H, Torres RdS, Rocha A (2016) Illuminant-based transformed spaces for image forensics. IEEE Trans Inf Forensics Secur 11(4):720–733

    Article  Google Scholar 

  9. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. In: British machine vision conference

  10. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  11. De Carvalho TJ, Riess C, Angelopoulou E, Pedrini H, de Rezende Rocha A (2013) Exposing digital image forgeries by illumination color classification. IEEE Trans Inf Forensics Secur 8(7):1182–94

    Article  Google Scholar 

  12. Durbin J, Knott M (1972) Components of cramer-von mises statistics. i. J R Stat Soc Ser B Methodol 34:290–307

    MathSciNet  MATH  Google Scholar 

  13. Fan Y, Carr P, Fernandez-Maloigne C (2015) Image splicing detection with local illumination estimation. In: 2015 IEEE international conference on Image processing (ICIP), pp 2940–44. https://doi.org/10.1109/ICIP.2015.7351341

  14. Finlayson GD, Schaefer G (2001) Solving for colour constancy using a constrained dichromatic reflection model. Int J Comput Vis 42(3):127–144

    Article  MATH  Google Scholar 

  15. Francis K, Gholap S, Bora PK (2014) Illuminant colour based image forensics using mismatch in human skin highlights. In: 2014 twentieth national conference on Communications (NCC). IEEE, pp 1–6

  16. Gholap S, Bora PK (2008) Illuminant colour based image forensics. In: TENCON 2008 - 2008 IEEE Region 10 conference, pp 1–5. https://doi.org/10.1109/TENCON.2008.4766772

  17. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663. https://doi.org/10.1109/TIP.2010.2044957

    Article  MathSciNet  MATH  Google Scholar 

  18. Junior OL, Delgado D, Goncalves V, Nunes U (2009) Trainable classifier-fusion schemes: an application to pedestrian detection. In: 2009 12Th international IEEE conference on intelligent transportation systems, pp 1–6. https://doi.org/10.1109/ITSC.2009.5309700

  19. Kailath T (1967) The divergence and bhattacharyya distance measures in signal selection. IEEE Trans Commun Technol 15(1):52–60

    Article  Google Scholar 

  20. Kannala J, Rahtu E (2012) Bsif: binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR). IEEE, pp 1363–1366

  21. Khan FS, Anwer RM, van de Weijer J, Felsberg M, Laaksonen J (2015) Compact color–texture description for texture classification. Pattern Recogn Lett 51:16–22

    Article  Google Scholar 

  22. Khan R, van de Weijer J, Khan FS, Muselet D, Ducottet C, Barat C (2013) Discriminative color descriptors. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2866–2873. https://doi.org/10.1109/CVPR.2013.369

  23. Levina E, Bickel P (2001) The earth mover’s distance is the mallows distance: Some insights from statistics. In: 2001 Proceedings of Eighth IEEE international conference on Computer Vision (ICCV), vol 2. IEEE, pp 251–256

  24. Ling H, Okada K (2006) Diffusion distance for histogram comparison. In: 2006 IEEE computer society conference on Computer vision and pattern recognition, vol 1. IEEE, pp 246–253

  25. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  26. Massey FJ Jr (1951) The kolmogorov-smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  MATH  Google Scholar 

  27. Mazumdar A, Bora PK (2016) Exposing splicing forgeries in digital images through dichromatic plane histogram discrepancies. In: Proceedings of the tenth indian conference on computer vision, graphics and image processing. ACM, p 62

  28. Meshgi K, Ishii S (2015) Expanding histogram of colors with gridding to improve tracking accuracy. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE, pp 475–479

  29. Mindru F, Tuytelaars T, Van Gool L, Moons T (2004) Moment invariants for recognition under changing viewpoint and illumination. Comput Vis Image Underst 94(1):3–27

    Article  Google Scholar 

  30. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  31. Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. In: International conference on image and signal processing. Springer, pp 236–243

  32. Pedone M, Heikkil J (2012) Local phase quantization descriptors for blur robust and illumination invariant recognition of color textures. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp 2476–2479

  33. Riess C, Angelopoulou E (2010) Scene illumination as an indicator of image manipulation. In: Information hiding, vol 6387, pp 66–80

  34. Roemer J, Groman M, Yang Z, Wang Y, Tan CC, Mi N (2014) Improving virtual machine migration via deduplication. In: 2014 IEEE 11th International Conference on Mobile ad hoc and Sensor Systems (MASS). IEEE, pp 702–707

  35. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  36. van de Sande K, Gevers T, Snoek C (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596. https://doi.org/10.1109/TPAMI.2009.154

    Article  Google Scholar 

  37. van de Sande KEA, Gevers T, Snoek CGM (2011) Empowering visual categorization with the gpu. IEEE Trans Multimedia 13(1):60–70. http://www.science.uva.nl/research/publications/2011/vandeSandeITM2011

    Article  Google Scholar 

  38. Smith AR (1978) Color gamut transform pairs. ACM Siggraph Comput Graph 12(3):12–19

    Article  Google Scholar 

  39. Steiger JH, Shapiro A, Browne MW (1985) On the multivariate asymptotic distribution of sequential chi-square statistics. Psychometrika 50(3):253–263

    Article  MathSciNet  MATH  Google Scholar 

  40. Ojala T, Pietikäinen M, M?enpää T (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: Advances in Pattern Recognition, ICAPR 2001 Proceedings, Lecture Notes in Computer Science 2013. Springer, pp 397–406

  41. Tai J, Liu D, Yang Z, Zhu X, Lo J, Mi N (2017) Improving flash resource utilization at minimal management cost in virtualized flash-based storage systems. IEEE Trans Cloud Comput 5(3):537–549

    Article  Google Scholar 

  42. Tan RT, Nishino K, Ikeuchi K (2004) Color constancy through inverse-intensity chromaticity space. J Opt Soc Am A 21(3):321–34

    Article  Google Scholar 

  43. Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7(11):1602–1609. https://doi.org/10.1109/83.725367

    Article  Google Scholar 

  44. Van De Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–14

    Article  MathSciNet  Google Scholar 

  45. Vedaldi A, Lenc K (2015) Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia. ACM, pp 689–692

  46. Vidyadharan DS, Thampi SM (2015) Brightness distribution based image tampering detection. In: 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, pp 1–5

  47. Vidyadharan DS, Thampi SM (2015) Detecting spliced face in a group photo using pca. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SOCPAR). IEEE, pp 175–180

  48. Wei X (2007) Gray level run length matrix toolbox v1.0. Software Beijing Aeronautical Technology Research Center. http://www.mathworks.com/matlabcentral/fileexchange/download.do?objectId=17482&fn=RunLengthMatrixToolboxver1.0&fe=.zip&cid=1101680

  49. Van de Weijer J, Gevers T, Bagdanov AD (2006) Boosting color saliency in image feature detection. IEEE Trans Pattern Anal Mach Intell 28(1):150–156

    Article  Google Scholar 

  50. van de Weijer J, Schmid C, Verbeek J, Larlus D (2009) Learning color names for real-world applications. IEEE Trans Image Process 18(7):1512–1523. https://doi.org/10.1109/TIP.2009.2019809

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu X, Fang Z (2011) Image splicing detection using illuminant color inconsistency. In: 2011 third International Conference on Multimedia Information Networking and Security (MINES). IEEE, pp 600–03

  52. Yan-li H, Shao-Zhang N, Jian-Cheng Z, Lin-Na Z (2014) Forensics of image tampering based on the consistency of illuminant chromaticity. In: 2014 Annual Summit and Conference on Asia-Pacific Signal and Information Processing Association (APSIPA). IEEE, pp 1–4

  53. Yang Z, Awasthi M, Ghosh M, Mi N (2016) A fresh perspective on total cost of ownership models for flash storage in datacenters. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CLOUDCOM). IEEE, pp 245–252

  54. Yang Z, Tai J, Bhimani J, Wang J, Mi N, Sheng B (2016) Grem: dynamic ssd resource allocation in virtualized storage systems with heterogeneous io workloads. In: 2016 IEEE 35th International on Performance Computing and Communications Conference (IPCCC). IEEE, pp 1–8

  55. Zhang L, Zhou Z, Li H (2012) Binary gabor pattern: an efficient and robust descriptor for texture classification. In: 2012 19Th IEEE international conference on image processing, pp 81–84. https://doi.org/10.1109/ICIP.2012.6466800

  56. Zhou P, Han X, Morariu VI, Davis LS (2017) Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp 1831–1839

Download references

Acknowledgment

Authors acknowledge the Department of Higher Education, Government of Kerala for funding the research and the Department of Computer Science and Engineering, College of Engineering-Trivandrum for providing lab facilities to carry out the work. The authors would like to thank Dr. Tiago José De Carvalho for sharing the database. Also, authors would like to thank Mr. Aniruddha Mazumdar for sharing the source code of previous works for comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya S. Vidyadharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyadharan, D.S., Thampi, S.M. Evaluating color and texture features for forgery localization from illuminant maps. Multimed Tools Appl 77, 21131–21161 (2018). https://doi.org/10.1007/s11042-017-5574-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5574-0

Keywords

Navigation