Skip to main content
Log in

Multi-scale CNNs for 3D model retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recent advancements in low-cost 3D sensors and mobile devices of virtual 3D models have additionally facilitated the accessibility of 3D data. 3D model retrieval is becoming an indispensable function for modern search engines. An effective retrieval model is at the core of computer vision. With the continuous improvement of 3D data, there are large number of methods to solve this problem. Existing works proposed numerous works to deal with feature extraction and object matching. Most of them are unable to fully exploit the information of 3D representations. To address this problem, we propose a novel multi-layer deep network in this paper. First, multiple rendered images are extracted from a 3D object, and combined into one representative view, which is the actual input of the network. Then, the novel multi-layer network structure is trained and tested on these representative views, generating the feature leaning model, which owns the local and global information of a 3D object. Finally, simple Euclidean metric is used to compute the similarity between two different 3D models to complete the retrieval problem. Extensive experiments and corresponding experimental results have demonstrated the superiority of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://modelnet.cs.princeton.edu/

References

  1. Akgül CB, Sankur B, Yemez Y, Schmitt FJM (2009) 3D model retrieval using probability density-based shape descriptors. IEEE Trans Pattern Anal Mach Intell 31(6):1117–1133

    Article  MATH  Google Scholar 

  2. Ansary TF, Daoudi M, Vandeborre J (2007) A Bayesian 3-d search engine using adaptive views clustering. IEEE Trans Multimedia 9(1):78–88

    Article  Google Scholar 

  3. Bu S, Liu Z, Han J, Wu J, Ji R (2014) Learning high-level feature by deep belief networks for 3-d model retrieval and recognition. IEEE Trans Multimedia 16(8):2154–2167

    Article  Google Scholar 

  4. Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV (2005) Feature-based similarity search in 3d object databases. ACM Comput Surv 37(4):345–387

    Article  Google Scholar 

  5. Cao B, Kang Y, Lin S, Luo X, Xu S, Lv Z (2016) Style-sensitive 3d model retrieval through sketch-based queries. J Intell Fuzzy Syst 31(5):2637–2644

    Article  Google Scholar 

  6. Chen D, Tian X, Shen Y, Ouhyoung M (2003) On visual similarity based 3d model retrieval. Comput Graph Forum 22(3):223–232

    Article  Google Scholar 

  7. Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA, pp 248–255

  8. Ding G, Zhou J, Guo Y, Lin Z, Zhao S, Han J (2017) Large-scale image retrieval with sparse embedded hashing. Neurocomputing 257:24–36

    Article  Google Scholar 

  9. Gao Y, Dai Q (2014) View-based 3d object retrieval: challenges and approaches. IEEE MultiMedia 21(3):52–57

    Article  Google Scholar 

  10. Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua T (2012) Camera constraint-free view-based 3-d object retrieval. IEEE Trans Image Processing 21(4):2269–2281

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans Image Processing 21(9):4290–4303

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao Y, Zhen Y, Li H, Chua TS (2016) Filtering of brand-related microblogs using social-smooth multiview embedding. IEEE Trans Multimedia 18(10):2115–2126

    Article  Google Scholar 

  13. Gao Y, Zhang H, Zhao X, Yan S (2017) Event classification in microblogs via social tracking. ACM Trans Intell Syst Technol (TIST) 8(3):35

    Google Scholar 

  14. Hong R, Hu Z, Wang R, Wang M, Tao D (2016) Multi-view object retrieval via multi-scale topic models. IEEE Trans Image Processing 25(12):5814–5827

    Article  MathSciNet  Google Scholar 

  15. Hu F, Xia G, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707

    Article  Google Scholar 

  16. Irfanoglu MO, Gökberk B, Akarun L (2004) 3D shape-based face recognition using automatically registered facial surfaces. In: 17th international conference on pattern recognition, ICPR 2004, Cambridge, UK, August 23–26, 2004, pp 183–186

  17. Kalogerakis E, Averkiou M, Maji S, Chaudhuri S (2016) 3D shape segmentation with projective convolutional networks. arXiv:1612.02808

  18. Kazhdan MM, Funkhouser TA, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3d shape descriptors. In: First eurographics symposium on geometry processing, Aachen, Germany, June 23–25, 2003, pp 156–164

  19. LeCun Y, Haffner P, Bottou L, Bengio Y (1999) Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision, p 319

  20. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: 2004 IEEE computer society conference on computer vision and pattern recognition (CVPR 2004), with CD-ROM, 27 June–2 July 2004, Washington, DC, USA, pp 97–104

  21. Liu A, Wang Z, Nie W, Su Y (2015) Graph-based characteristic view set extraction and matching for 3d model retrieval. Inf Sci 320:429–442

    Article  Google Scholar 

  22. Liu A, Nie W, Gao Y, Su Y (2016) Multi-modal clique-graph matching for view-based 3d model retrieval. IEEE Trans Image Processing 25(5):2103–2116

    Article  MathSciNet  Google Scholar 

  23. Liu AA, Nie WZ, Gao Y et al (2017) View-based 3-d model retrieval: a benchmark. IEEE Transactions on Cybernetics PP(99):1–13

    Article  Google Scholar 

  24. Liu Q (2012) A survey of recent view-based 3d model retrieval methods. arXiv:1208.3670

  25. Maturana D, Scherer S (2015) Voxnet: a 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International conference on intelligent robots and systems, IROS 2015, Hamburg, Germany, September 28–October 2, 2015, pp 922–928

  26. Nie L, Wang M, Zha Z, Li G, Chua TS (2011) Multimedia answering: enriching text qa with media information. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval. SIGIR ’11. ACM, pp 695–704

  27. Nie L, Wang M, Zha ZJ, Chua TS (2012) Oracle in image search: a content-based approach to performance prediction. ACM Trans Inf Syst 30(2):13:1–13:23

    Article  Google Scholar 

  28. Saupe D, Vranic DV (2001) 3D model retrieval with spherical harmonics and moments. In: Pattern recognition, 23rd DAGM-symposium, Munich, Germany, September 12–14, 2001, proceedings, pp 392–397

  29. Shi B, Bai S, Zhou Z, Bai X (2015) Deeppano: deep panoramic representation for 3-d shape recognition. IEEE Signal Process Lett 22(12):2339–2343

    Article  Google Scholar 

  30. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  31. Su H, Maji S, Kalogerakis E, Learned-Miller EG (2015) Multi-view convolutional neural networks for 3d shape recognition. In: 2015 IEEE international conference on computer vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, pp 945–953

  32. Tangelder JWH, Veltkamp RC (2003) Polyhedral model retrieval using weighted point sets. Int J Image Graphics 3(1):209

    Article  Google Scholar 

  33. Wang D, Wang B, Zhao S, Yao H, Liu H (2017) View-based 3d object retrieval with discriminative views. Neurocomputing 252:58–66

    Article  Google Scholar 

  34. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D shapenets: a deep representation for volumetric shapes. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp 1912–1920

  35. Xie J, Dai G, Zhu F, Wong EK, Fang Y (2017) Deepshape: deep-learned shape descriptor for 3d shape retrieval. IEEE Trans Pattern Anal Mach Intell 39(7):1335–1345

    Article  Google Scholar 

  36. Xu X, Corrigan D, Dehghani A, Caulfield S, Moloney D (2016) 3D object recognition based on volumetric representation using convolutional neural networks. In: Articulated motion and deformable objects - 9th international conference, AMDO 2016, Palma de Mallorca, Spain, July 13–15, 2016, proceedings, pp 147–156

  37. Yang S, Ramanan D (2015) Multi-scale recognition with dag-cnns. In: 2015 IEEE international conference on computer vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, pp 1215–1223

  38. Zhao X, Si S, Dui H, Cai Z, Sun S (2013) Integrated importance measure for multi-state coherent systems of k level. J Syst Eng Electron 24(6):1029–1037

    Article  Google Scholar 

  39. Zhao X, Zhang H, Jiang Y et al (2013) An effective heuristic-based approach for partitioning. J Appl Math 2013(9):289–325

    Google Scholar 

  40. Zhao S, Chen L, Yao H, Zhang Y, Sun X (2015) Strategy for dynamic 3d depth data matching towards robust action retrieval. Neurocomputing 151:533–543

    Article  Google Scholar 

  41. Zhao S, Yao H, Zhang Y et al (2015) View-based 3d object retrieval via multi-modal graph learning. Signal Process 112(C):110–118

    Article  Google Scholar 

  42. Zhao X, Si S, Dui H, Cai Z, Wang J, Song X (2015) Compositional performance evaluation with importance measures. Communications in Statistics-Theory and Methods 44(24):5240–5253

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimedia 19(3):632–645

    Article  Google Scholar 

  44. Zhao X, Wang N, Zhang Y et al (2017) Beyond pairwise matching: Person reidentification via high-order relevance learning. IEEE Transactions on Neural Networks and Learning Systems PP(99):1–14

    Google Scholar 

Download references

Acknowledgments

The work is partially supported by the National Natural Science Foundation of China (No. 61502337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Xiang, S. & Liu, A. Multi-scale CNNs for 3D model retrieval. Multimed Tools Appl 77, 22953–22963 (2018). https://doi.org/10.1007/s11042-018-5641-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5641-1

Keywords

Navigation