Skip to main content
Log in

Software randomness analysis and evaluation of lightweight ciphers: the prospective for IoT security

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the past few years, various lightweight cryptographic algorithms have been proposed to balance the trade-offs between the requirements of resource constrained IoT devices and the need to securely transmit and protect data. However, it is critical to analyze and evaluate these algorithms to examine their capabilities. This paper provides a thorough investigation of the randomness of ciphertext obtained from Simeck, Kasumi, DES and AES. The design of our randomness analysis is based on five metrics implemented following the guidance of the NIST statistical test suite for cryptographic applications. This analysis also provides performance and power consumption evaluations for the selected cryptographic algorithms using different platforms and measures. Results from the evaluation reveal that lightweight algorithms have competitive randomness levels, lower processing time and lower power consumption when compared to conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 197 NF (2009) Advanced Encryption Standard. processing Standards Publication

  2. Abd-Elmonim WG, Ghali NI, Hassanien AE (2011) Abraham A Known-plaintext attack of DES-16 using Particle Swarm Optimization. In: Third World Congress on Nature and Biologically Inspired Computing, pp 12–16. https://doi.org/10.1109/NaBIC.2011.6089410

  3. Adams C, Tavares S (1990) The use of bent sequences to achieve higher-order strict avalanche criterion in S-box design. Queen's University, Ontario

    Google Scholar 

  4. Akgün F, Buluş E (2016) Comparison of encryption algorithms strength used in 3G mobile communication. Trakya University J Eng Sci 17(1):1–11

  5. Aljawarneh S, Yassein MB, Talafha Wa A (2017) A resource-efficient encryption algorithm for multimedia big data. Multimedia Tools and Applications 76(21):22703–22724. https://doi.org/10.1007/s11042-016-4333-y

    Article  Google Scholar 

  6. Amic S, Soyjaudah KMS, Mohabeer H, Ramsawock G (2016) Cryptanalysis of DES-16 using Binary Firefly Algorithm. In: IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), 2016. pp 94–99.https://doi.org/10.1109/EmergiTech.2016.7737318

  7. Amin R, Kumar N, Biswas GP, Iqbal R, Chang V (2018) A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Futur Gener Comput Syst 78(3):1005–1019. https://doi.org/10.1016/j.future.2016.12.028

    Article  Google Scholar 

  8. Antonio T, Angelo L, Francesco B (2014) Information security and threats in mobile appliances. Recent Patents on Computer Science 7(1):3–11. https://doi.org/10.2174/2213275907666140610200010

    Article  Google Scholar 

  9. Bahrami S, Naderi M (2013) Encryption of multimedia content in partial encryption scheme of DCT transform coefficients using a lightweight stream algorithm. Optik - International Journal for Light and Electron Optics 124(18):3693–3700. https://doi.org/10.1016/j.ijleo.2012.11.028

    Article  Google Scholar 

  10. Barahtian O, Cuciuc M, Petcana L, Leordeanu C, Cristea V (2015) Evaluation of Lightweight Block Ciphers for Embedded Systems. In: Bica I, Naccache D, Simion E (eds) Innovative Security Solutions for Information Technology and Communications: 8th International Conference, SECITC 2015, Bucharest, Romania, June 11–12, 2015. Revised Selected Papers. Springer International Publishing, Cham, pp 49–58. https://doi.org/10.1007/978-3-319-27179-8_4

  11. Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B, Wingers L (2015) The SIMON and SPECK lightweight block ciphers. Paper presented at the 52nd Annual Design Automation Conference, San Francisco

  12. Benrhouma O, Hermassi H, Belghith S (2015) Security analysis and improvement of a partial encryption scheme. Multimedia Tools and Applications 74(11):3617–3634. https://doi.org/10.1007/s11042-013-1790-4

    Article  Google Scholar 

  13. Biham E, Biryukov A (1997) An improvement of Davies’ attack on DES. J Cryptology 10(3):195–205. https://doi.org/10.1007/s001459900027

    Article  MATH  Google Scholar 

  14. Biham E, Shamir A (1991) Differential cryptanalysis of DES-like cryptosystems. In: Menezes AJ, Vanstone SA (eds) Advances in cryptology-CRYPT0’ 90. Springer, Berlin, pp 2–21. https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  15. Biham E, Shamir A (1991) Differential cryptanalysis of DES-like cryptosystems. J Cryptology 4(1):3–72. https://doi.org/10.1007/BF00630563

    Article  MathSciNet  MATH  Google Scholar 

  16. Biham E, Biryukov A, Shamir A (2005) Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. J Cryptology 18(4):291–311. https://doi.org/10.1007/3-540-48910-X_2

    Article  MathSciNet  MATH  Google Scholar 

  17. Biham E, Dunkelman O, Keller N (2008) A unified approach to related-key attacks. In: International Workshop on Fast Software Encryption, Springer, pp 73–96. https://doi.org/10.1007/978-3-540-71039-4_5

  18. Chen L, Thombre S, Järvinen K, Lohan ES, Alén-Savikko A, Leppäkoski H, Bhuiyan MZH, Bu-Pasha S, Ferrara GN, Honkala S, Lindqvist J, Ruotsalainen L, Korpisaari P, Kuusniemi H (2017) Robustness, security and privacy in location-based Services for Future IoT: a survey. IEEE Access 5:8956–8977. https://doi.org/10.1109/ACCESS.2017.2695525

    Article  Google Scholar 

  19. Chew L, Chew N, Norshahil I, Shah M, Azura N, Abdullah N, Hidayah N, Zawawi A, Rani HA, Zakaria AA (2015) Randomness analysis on Speck family of lightweight block cipher. International Journal of Cryptology Research 5(1):44–60

    Google Scholar 

  20. Daemen J, Rijmen V (1999) AES proposal: Rijndael

  21. Dhall S, Pal SK, Sharma K (2014) New lightweight conditional encryption schemes for multimedia. In: Pant M, Deep K, Nagar A, Bansal JC (eds) Proceedings of the third international conference on soft computing for problem solving, vol 1. Springer India, New Delhi, pp 365–377. https://doi.org/10.1007/978-81-322-1771-8_32

    Chapter  Google Scholar 

  22. Diffie W, Hellman ME (1977) Special feature exhaustive cryptanalysis of the NBS data encryption standard. Computer 10(6):74–84. https://doi.org/10.1109/C-M.1977.217750

    Article  Google Scholar 

  23. Dinarvand N, Barati H (2017) An efficient and secure RFID authentication protocol using elliptic curve cryptography. Wirel Netw. https://doi.org/10.1007/s11276-017-1565-3

  24. Duta C, Mocanu B-C, Vladescu F-A, Gheorghe L (2014) Randomness evaluation framework of cryptographic algorithms. International Journal on Cryptography and Information Security 4(1):31–49

    Article  Google Scholar 

  25. Dworkin MJ, Barker EB, Nechvatal JR et al (2001) Advanced Encryption Standard (AES). Federal Inf. Process. Stds. (NIST FIPS). https://doi.org/10.6028/NIST.FIPS.197

  26. El Hennawy HMS, Omar AEA, Kholaif SMA (2015) LEA: link encryption algorithm proposed stream cipher algorithm. Ain Shams Engineering Journal 6(1):57–65. https://doi.org/10.1016/j.asej.2014.08.001

    Article  Google Scholar 

  27. Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N, Mankodiya K (2018) Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Futur Gener Comput Syst 78(2):659–676. https://doi.org/10.1016/j.future.2017.04.036

    Article  Google Scholar 

  28. de Fuentes JM, González-Manzano L, Serna-Olvera J, Veseli F (2017) Assessment of attribute-based credentials for privacy-preserving road traffic services in smart cities. Pers Ubiquit Comput 21(5):869–891. https://doi.org/10.1007/s00779-017-1057-6

    Article  Google Scholar 

  29. Goubin L, Patarin J (1999) DES and differential power analysis the “duplication” method. In: Koç ÇK, Paar C (eds) Cryptographic hardware and embedded systems: first international workshop, CHES’99 Worcester, MA, USA, august 12–13, 1999 springer. Heidelberg, Berlin, pp 158–172. https://doi.org/10.1007/3-540-48059-5_15

    Chapter  Google Scholar 

  30. Gupta R, Rao UP (2017) A hybrid location privacy solution for mobile LBS. Mob Inf Syst 2017:11. https://doi.org/10.1155/2017/2189646

    Google Scholar 

  31. Gupta R, Rao UP (2017) An exploration to location based service and its privacy preserving techniques: a survey. Wirel Pers Commun 96(2):1973–2007. https://doi.org/10.1007/s11277-017-4284-2

    Article  Google Scholar 

  32. Hossain M, Hasan R, Skjellum A (2017) Securing the internet of things: a meta-study of challenges, approaches, and open problems. In: IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp 220–225. https://doi.org/10.1109/ICDCSW.2017.78

  33. Hossain MS, Xu C, Li Y, Pathan ASK, Bilbao J, Zeng W, Saddik AE (2017) Impact of next-generation mobile technologies on IoT-cloud convergence. IEEE Commun Mag 55(1):18–19. https://doi.org/10.1109/MCOM.2017.7823332

    Article  Google Scholar 

  34. Hossain M, Islam SMR, Ali F, Kwak K-S, Hasan R An internet of things-based health prescription assistant and its security system design. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2017.11.020

  35. Information Resources Management Association (2016) Big data: concepts, methodologies, tools, and applications. IGI Global. https://doi.org/10.4018/978-1-4666-9840-6

  36. Institute ETS (1999) Specification of the 3GPP confidentiality and integrity algorithms; Document 2: Kasumi specification, version 1.0

  37. Institute ETS (1999) ETSI SAGE 3GPP Standard Algorithms Task Force, Security Algorithms Group of Experts (SAGE) Report on the Evaluation of 3GPP Standard Confidentiality and Integrity Algorithms

  38. Institute ETS (2007) Universal Mobile Telecommunications System (UMTS); Specification of the 3GPP confidentiality and integrity algorithms; Document 2: Kasumi specification, 3GPP TS 35.202 version 7.0.0 Release 7

  39. Jenson S (2017) The future IoT: building better Legos. Computer 50(2):68–71. https://doi.org/10.1109/MC.2017.48

    Article  Google Scholar 

  40. Jesse N (2016) Internet of things and big data – the disruption of the value chain and the rise of new software ecosystems. IFAC-PapersOnLine 49(29):275–282. https://doi.org/10.1016/j.ifacol.2016.11.079

    Article  Google Scholar 

  41. Jindal P, Singh B (2017) Optimization of the security-performance tradeoff in RC4 encryption algorithm. Wirel Pers Commun 92(3):1221–1250. https://doi.org/10.1007/s11277-016-3603-3

    Article  Google Scholar 

  42. Kaminsky A, Kurdziel M, Radziszowski S (2010) An overview of cryptanalysis research for the advanced encryption standard. In: Milcom 2010 Military Communications Conference, pp 1310–1316. https://doi.org/10.1109/MILCOM.2010.5680130

  43. Katagi M, Moriai S (2008) Lightweight cryptography for the internet of things. Sony Corporation. Tokyo, Japan, Tech. Rep., 2011. [Online]. Available: http://www.iab.org/wp-content/IABuploads/2011/03/Kaftan.pdf

  44. Kaur G, Saini KS (2017) Securing network communication between motes using hierarchical group key management scheme using threshold cryptography in smart home using internet of things. In: Vishwakarma HR, Akashe S (eds) Computing and network sustainability: proceedings of IRSCNS 2016. Springer, Singapore, pp 201–212. https://doi.org/10.1007/978-981-10-3935-5_21

    Chapter  Google Scholar 

  45. Kazmi S, Ikram N (2013) Chaos based key expansion function for block ciphers. Multimedia Tools and Applications 66(2):267–281. https://doi.org/10.1007/s11042-011-0767-4

    Article  Google Scholar 

  46. Khan Z, Pervez Z, Abbasi AG (2017) Towards a secure service provisioning framework in a smart city environment. Futur Gener Comput Syst 77(Supplement C):112–135. https://doi.org/10.1016/j.future.2017.06.031

    Article  Google Scholar 

  47. Khovratovich D, Nikolic I (2010) Rotational Cryptanalysis of ARX. In: FSE, Springer, pp 333–346

  48. Kim K (1991) Construction of DES-like S-boxes Based on Boolean Functions Satisfying the SAC. In: Advances in Cryptology—ASIACRYPT'91, Springer, pp 59–72

  49. Kim K, Park S, Lee S (1993) Reconstruction of s2 DES S- boxes and their Immunity to Differential Cryptanalysis. In: Proceedings of the 1993 Korea-Japan Workshop on Information Security and Cryptography, Seoul, Korea, pp 24–26

  50. Kinga Marton AS, Ignat I (2010) Randomness in digital cryptography: a survey. Rom J Inf Sci Technol 13(3):219–240

  51. Knudsen LR (1994) Truncated and higher order differentials. In: International Workshop on Fast Software Encryption, Springer, pp 196–211

  52. Kumar N, Sharma S (2017) Survey analysis on the usage and impact of Whatsapp messenger. Global Journal of Enterprise Information System 8(3):52–57. https://doi.org/10.18311/gjeis/2016/15741

    Article  Google Scholar 

  53. Kumar S, Paar C, Pelzl J, Pfeiffer G, Rupp A, Schimmler M (2006) How to Break DES for Euro 8,980. In: 2nd Workshop on Special-purpose Hardware for Attacking Cryptographic Systems—SHARCS, pp 3–4

  54. Kumar SP, Samson VRR, Sai UB, Rao PLSDM, Eswar KK (2017) Smart health monitoring system of patient through IoT. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp 551–556. https://doi.org/10.1109/I-SMAC.2017.8058240

  55. Lawrence E. Bassham I, Rukhin AL, Soto J, Nechvatal JR, Smid ME, Barker EB, Leigh SD, Levenson M, Vangel M, Banks DL, Heckert NA, Dray JF, Vo S (2010) SP 800–22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards & Technology

  56. Lee RB, Shi Z, Yang X (2001) Cryptography efficient permutation instructions for fast software. IEEE Micro 21(6):56–69. https://doi.org/10.1109/40.977759

    Article  Google Scholar 

  57. Li C-T, Lee C-C, Weng C-Y, Wu T-Y, Chen C-M (2017) Cryptanalysis of “an efficient searchable encryption against keyword guessing attacks for shareable electronic medical Records in Cloud-Based System”. In: Kim K, Joukov N (eds) Information science and applications 2017: ICISA 2017. Springer, Singapore, pp 282–289. https://doi.org/10.1007/978-981-10-4154-9_33

    Chapter  Google Scholar 

  58. Liao D, Sun G, Li H, Yu H, Chang V (2017) The framework and algorithm for preserving user trajectory while using location-based services in IoT-cloud systems. Clust Comput 20(3):2283–2297. https://doi.org/10.1007/s10586-017-0986-1

    Article  Google Scholar 

  59. Liu Y, Tian S, Hu W, Xing C (2012) Design and statistical analysis of a new chaotic block cipher for wireless sensor networks. Commun Nonlinear Sci Numer Simul 17(8):3267–3278

    Article  MathSciNet  Google Scholar 

  60. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. Paper presented at the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina

  61. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181(Supplement C):108–115. https://doi.org/10.1016/j.neucom.2015.08.096

    Article  Google Scholar 

  62. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona

  63. Lot NH, Abdullah NAN, Rani HA (2011) Statistical analysis on KATAN Block Cipher. In: 2011 International Conference on Research and Innovation in Information Systems, 2011. pp 1–6. https://doi.org/10.1109/ICRIIS.2011.6125698

  64. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools and Applications 76(8):10701–10719. https://doi.org/10.1007/s11042-015-3188-y

    Article  Google Scholar 

  65. Matsui M (1994) Linear cryptanalysis method for DES cipher. Paper presented at the workshop on the theory and application of cryptographic techniques on advances in cryptology. Lofthus, Norway

    Google Scholar 

  66. Matsui M (1997) New block encryption algorithm MISTY. In: Biham E (ed) Fast software encryption: 4th international workshop, FSE’97 Haifa, Israel, January 20–22 1997. Springer, Berlin, pp 54–68. https://doi.org/10.1007/BFb0052334

    Chapter  Google Scholar 

  67. McKay KA, Bassham L, Turan MS, Mouha N (2017) Report on Lightweight Cryptography. National Institute of Standards and Technology

  68. Meng S-H, Huang A-C, Lee C-J, Huang T-J, Dal J-N (2018) Design for Intelligent Control System of Curtain Based on Arduino. In: Pan J-S, Wu T-Y, Zhao Y, Jain LC (eds) Advances in Smart Vehicular Technology, Transportation, Communication and Applications: Proceedings of the First International Conference on Smart Vehicular Technology, Transportation, Communication and Applications, November 6–8, 2017, Kaohsiung, Taiwan. Springer International Publishing, Cham, pp 178–184. https://doi.org/10.1007/978-3-319-70730-3_22

  69. Montag C, Błaszkiewicz K, Sariyska R, Lachmann B, Andone I, Trendafilov B, Eibes M, Markowetz A (2015) Smartphone usage in the 21st century: who is active on WhatsApp? BMC Research Notes 8(1):331. https://doi.org/10.1186/s13104-015-1280-z

    Article  Google Scholar 

  70. Nadeem A, Javed MY (2005) A performance comparison of data encryption algorithms. International Conference on Information and Communication Technologies 27-28:84–89. https://doi.org/10.1109/ICICT.2005.1598556

    Google Scholar 

  71. Perera C, Liu CH, Jayawardena S, Chen M (2014) A survey on internet of things from industrial market perspective. IEEE Access 2:1660–1679. https://doi.org/10.1109/ACCESS.2015.2389854

    Article  Google Scholar 

  72. Rani DJ, Roslin SE (2016) Light weight cryptographic algorithms for medical internet of things (IoT) - a review. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), pp 1–6. https://doi.org/10.1109/GET.2016.7916703

  73. Riahi Sfar A, Natalizio E, Challal Y, Chtourou Z (2017) A roadmap for security challenges in the internet of things. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2017.04.003

  74. Roback; JRNEBBLEBWEBMJDJFE (2001) Report on the Development of the Advanced Encryption Standard (AES). Journal of Research (NIST JRES) 106 No. 3

  75. Rukhin A, Soto J, Nechvatal J, Barker E, Leigh S, Levenson M, Banks D, Heckert A, Dray J, Vo S (2010) Statistical test suite for random and pseudorandom number generators for cryptographic applications. special publication 800-22. National Institute of Standards and Technology (NIST), Gaithersburg

  76. Sadeghi AR, Wachsmann C (2015) Waidner M Security and privacy challenges in industrial Internet of Things. In: 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 8–12 June. pp 1–6. https://doi.org/10.1145/2744769.2747942

  77. Schneier B, Schneier B (2015) Data Encryption Standard (DES). In: Applied Cryptography, Second Edition. John Wiley & Sons, Inc., pp 265–301. https://doi.org/10.1002/9781119183471.ch12

  78. Sehgal VK, Mehrotra S, Marwah H (2016) Car security using Internet of Things. In: 2016 I.E. 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp 1–5. https://doi.org/10.1109/ICPEICES.2016.7853207

  79. Singh S, Sharma PK, Moon SY, Park JH (2017) Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0494-4

  80. Sulistyo B, Rahardjo B, Mahayana D (2009) On applicability of chaos game method for block cipher randomness analysis. In: International Conference on Electrical Engineering and Informatics, pp 258–262. https://doi.org/10.1109/ICEEI.2009.5254777

  81. Sun G, Chang V, Ramachandran M, Sun Z, Li G, Yu H, Liao D (2017) Efficient location privacy algorithm for Internet of Things (IoT) services and applications. J Netw Comput Appl 89(Supplement C):3–13. https://doi.org/10.1016/j.jnca.2016.10.011

    Article  Google Scholar 

  82. Tilborg HCA, Jajodia S (2011) Encyclopedia of cryptography and security. Springer Publishing Company, Incorporated

  83. Tweneboah-Koduah S, Skouby KE, Tadayoni R (2017) Cyber security threats to IoT applications and service domains. Wirel Pers Commun 95(1):169–185. https://doi.org/10.1007/s11277-017-4434-6

    Article  Google Scholar 

  84. Verma OP, Agarwal R, Dafouti D, Tyagi S (2011) Notice of Violation of IEEE Publication Principles Peformance analysis of data encryption algorithms. In: 3rd International Conference on Electronics Computer Technology, 2011. pp 399–403. https://doi.org/10.1109/ICECTECH.2011.5942029

  85. Webster AF, Tavares S (1986) On the design of S-boxes. In: Advances in cryptology, Springer Berlin Heidelberg, pp 523–534

  86. Xu L, Jiang C, Wang J, Yuan J, Ren Y (2014) Information security in big data: privacy and data mining. IEEE Access 2:1149–1176. https://doi.org/10.1109/ACCESS.2014.2362522

    Article  Google Scholar 

  87. Yang G, Zhu B, Suder V, Aagaard MD, Gong G (2015) The Simeck family of lightweight block ciphers. In: Güneysu T, Handschuh H (eds) Cryptographic hardware and embedded systems -- CHES 2015: 17th international workshop, Saint-Malo, France, September 13–16, 2015. Springer, Berlin, pp 307–329. https://doi.org/10.1007/978-3-662-48324-4_16

    Chapter  Google Scholar 

  88. Yang Y, Liu X, Deng RH, Li Y (2017) Lightweight sharable and traceable secure mobile health system. IEEE Transactions on Dependable and Secure Computing PP 99:1–14. https://doi.org/10.1109/TDSC.2017.2729556

    Google Scholar 

  89. Yang Y, Zheng X, Chang V, Ye S, Tang C (2017) Lattice assumption based fuzzy information retrieval scheme support multi-user for secure multimedia cloud. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-4560-x

  90. Yang Y, Zheng X, Liu X, Zhong S, Chang V (2017) Cross-domain dynamic anonymous authenticated group key management with symptom-matching for e-health social system. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2017.06.025

  91. Yao X, Chen Z, Tian Y (2015) A lightweight attribute-based encryption scheme for the internet of things. Futur Gener Comput Syst 49(Supplement C):104–112. https://doi.org/10.1016/j.future.2014.10.010

    Article  Google Scholar 

  92. Zhu L, Zhang Z, Xu C (2017) Privacy-preserving meter reading transmission in smart grid. In: Secure and privacy-preserving data communication in internet of things. Springer, Singapore, pp 33–52. https://doi.org/10.1007/978-981-10-3235-6_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Qasaimeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasaimeh, M., Al-Qassas, R.S. & Tedmori, S. Software randomness analysis and evaluation of lightweight ciphers: the prospective for IoT security. Multimed Tools Appl 77, 18415–18449 (2018). https://doi.org/10.1007/s11042-018-5663-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5663-8

Keywords

Navigation