Abstract
Online single target tracking (OSTT) is a prominent topic in normal surveillance environments for security and transportation applications. However, OSTT comparative analysis is seriously under-investigated in the context of wide area motion imagery (WAMI) although its importance keeps rising with the popularity of the unmanned aerial vehicles. In this work, we make several efforts toward WAMI tracking analysis. First, we propose a new WAMI OSTT benchmark dataset, named WAMI-226, which consists of 100 image frames and 226 targets. This new benchmark dataset brings together research challenges including low frame rate, low resolution, and low contrast. Second, we evaluate 20 existing online trackers for WAMI tracking scenarios. Third, by combining the basic appearance model, background subtraction and high-order motion (HoM) affinity, we develop a novel normalized cross correlation HoM (NCC-HoM) tracking algorithm for WAMI OSTT. The experimental results show that the proposed NCC-HoM method achieves significant improvements for both target initialization and online tracking. Thus, NCC-HoM serves as a new baseline algorithm for the WAMI-226 benchmark.














Similar content being viewed by others
Notes
References
Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: CVPR, pp 798–805
Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072
Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29 (2):261–271
Babenko B, Yang M, Belongie SJ (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632
Bao C, Wu Y, Ling H, Ji H (2012) Real time robust ℓ 1 tracker using accelerated proximal gradient approach. In: CVPR, pp 1830–1837
Blasch E, Seetharaman G, Suddarth S, Palaniappan K, Chen G, Ling H, Basharat A (2014) Summary of methods in wide-area motion imagery (WAMI). Proc SPIE:9089
Chi Z, Li H, Lu H, Yang M (2017) Dual deep network for visual tracking. IEEE Trans Image Process 26(4):2005–2015
Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643
Comaniciu D, Member VR, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575
Danelljan M, Hȧger G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp 4310–4318
Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with gaussian processes regression. In: ECCV, pp 188–203
Grabner H, Bischof H (2006) On-line boosting and vision. In: CVPR, pp 260–267
Hare S, Saffari A, Torr PHS (2011) Struck: structured output tracking with kernels. In: ICCV, pp 263–270
Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the alvey vision conference, pp 1–6
He S, Yang Q, Lau RWH, Wang J, Yang M (2013) Visual tracking via locality sensitive histograms. In: CVPR, pp 2427–2434
Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV, pp 702–715
Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596
Jia X, Lu H, Yang M (2012) Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp 1822–1829
Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernández G, Vojír T, häger G, Nebehay G, Pflugfelder RP (2015) The visual object tracking VOT2015 challenge results. In: ICCVW, pp 564–586
Kwon J, Lee KM (2010) Visual tracking decomposition. In: CVPR, pp 1269–1276
Li X, Hu W, Shen C, Zhang Z, Dick AR, van den Hengel A (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):58:1–58:48
Li Y, Zhu J, Hoi SCH (2015) Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: CVPR, pp 353–361
Li A, Lin M, Wu Y, Yang M, Yan S (2016) NUS-PRO: a new visual tracking challenge. IEEE Trans Pattern Anal Mach Intell 38(2):335–349
Li P, Wang D, Wang L, Lu H (2018) Deep visual tracking: review and experimental comparison. Pattern Recogn 76:323–338
Liang P, Blasch E, Ling H (2015) Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans Image Process 24(12):5630–5644
Ling H, Wu Y, Blasch E, Chen G, Lang H, Bai L (2011) Evaluation of visual tracking in extremely low frame rate wide area motion imagery. In: FUSION, pp 1–8
Liu Z, Wang Z, Lu H, Wang D (2017) Online vehicle tracking in aerial imagery. In: International conference on intelligence science and big data engineering, pp 335–345
Lu Y, Wu T, Zhu S (2014) Online object tracking, learning, and parsing with and-or graphs. In: CVPR, pp 3462–3469
Ma C, Huang J, Yang X, Yang M (2015) Hierarchical convolutional features for visual tracking. In: ICCV, pp 3074–3082
Mei X, Ling H (2009) Robust visual tracking using ℓ 1 minimization. In: ICCV, pp 1436–1443
Pėrez P, Hue C, Vermaak J, Gangnet M (2002) Color-based probabilistic tracking. In: ECCV, pp 661–675
Prokaj J (2013) Exploitation of wide area motion imagery. Ph.D. thesis University of Southern California
Prokaj J, Duchaineau M, Medioni GG (2011) Inferring tracklets for multi-object tracking. In: CVPRW, pp 37–44
Prokaj J, Medioni GG (2014) Persistent tracking for wide area aerial surveillance. In: CVPR, pp 1186–1193
Reilly V, Idrees H, Shah M (2010) Detection and tracking of large number of targets in wide area surveillance. In: ECCV, pp 186–199
Ross D, Lim J, Lin RS, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141
Saleemi I, Shah M (2013) Multiframe many-many point correspondence for vehicle tracking in high density wide area aerial videos. Int J Comput Vis 104(2):198–219
Sevilla-Lara L, Learned-Miller EG (2012) Distribution fields for tracking. In: CVPR, pp 1910–1917
Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468
Song S, Xiao J (2013) Tracking revisited using RGBD camera: unified benchmark and baselines. In: ICCV, pp 233–240
The Columbus Large Image Format CLIF dataset 2007. https://www.sdms.afrl.af.mil/index.php?collection=clif2007
The Wright-Patterson Air Force Base WPAFB dataset 2007. https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009
Torr PHS, Zisserman A (2000) Mlesac: a new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78:138–156
Uemura T, Lu H, Kim H (2017) Marine organisms tracking and recognizing using yolo. In: EAI International conference on robotic sensor networks
Wang N, Yeung D (2013) Learning a deep compact image representation for visual tracking. In: NIPS, pp 809–817
Wang D, Lu H, Yang M (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325
Wang N, Wang J, Yeung D (2013) Online robust non-negative dictionary learning for visual tracking. In: ICCV, pp 657–664
Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In: ICCV, pp 3119–3127
Wang N, Shi J, Yeung D, Jia J (2015) Understanding and diagnosing visual tracking systems. In: ICCV, pp 3101–3109
Wu Y, Lim J, Yang M (2013) Online object tracking: a benchmark. In: CVPR, pp 2411–2418
Wu Y, Lim J, Yang M (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848
Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45
Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: CVPR, pp 2042–2049
Zhang J, Ma S, Sclaroff S (2014) MEEM: robust tracking via multiple experts using entropy minimization. In: ECCV, pp 188–203
Zhang K, Zhang L, Yang M (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015
Zhang K, Liu Q, Wu Y, Yang M (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25(4):1779–1792
Zhong W, Lu H, Yang M (2012) Robust object tracking via sparsity-based collaborative model. In: CVPR, pp 1838–1845
Acknowledgements
This work is supported in part by US NSF Grants 1618398, IIS-1449860 and IIS-1350521.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, D., Yi, M., Yang, F. et al. Online single target tracking in WAMI: benchmark and evaluation. Multimed Tools Appl 77, 10939–10960 (2018). https://doi.org/10.1007/s11042-018-5666-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-5666-5