Abstract
In order to robustly perform tasks based on 3D data model, we propose a feature-preserving mesh denoising algorithm based on the face classification. In the proposed algorithm, the sharp features which play a key role in 3D models are kept unchanged while denoising. The multiscale tensor voting is used to classify the faces into two classes where one is called as feature faces and another as non-feature faces. Feature faces is usually distributed in the neighbourhood of shape edges. Thus these feature faces are key faces in perceptual quality. For processing the faces more efficiently, we propose a search algorithm to find those faces which are close to the feature face and are of similar geometrical properties and then use them to guide the filtering process. The remaining faces are processed by an iteratively joint bilateral filtering. Finally, vertex position is updated according to the filtered face normals. the effectiveness of proposed approach is validated through extensive experiments. Experimental results show the performance is better than the existing methods.





Similar content being viewed by others
References
Anastasia I, Elisavet C, Spiros N, Ioannis K (2017) Deep learning advances in computer vision with 3D data: a survey. ACM Comput Surv 50(2):1–38
Bian Z, Tong R (2011) Feature-preserving mesh denoising based on vertices classification. Comput Aided Geom Des 28(1):50–64
Fan H, Yu Y, Peng Q (2009) Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans Vis Comput Graph 16(2):312–324
Fleishman S, Drori I, Cohen-Or D (2003) Bilateral mesh denoising. Acm Trans Graph 22(3):950–953
Gao Y, Zhang HW, Zhao XB, Yan SC (2017) Event classification in microblogs via social tracking. Acm Trans Intell Syst Technol 8(3):1–14
He L, Schaefer S (2013) Mesh denoising via l0 minimization. Acm Trans Graph 32(4):1–8
Jones TR, Durand FR, Desbrun M (2003) Non-iterative, feature-preserving mesh smoothing. Acm Trans Graph 22(3):943–949
Kim HS, Choi HK, Lee KH (2009) Feature detection of triangular meshes based on tensor voting theory. Comput-Aided Des 41(1):47–58
Lee KW, Wang WP (2006) Feature-preserving mesh denoising via bilateral normal filtering. Int Conf Comput Aided Des Comput Graph 1:275–280
Manduchi R, Tomasi C (1998) Bilateral Filtering for Gray and Color Images. IEEE Int Conf Comput Vis Pattern Recognit, pp 839–846
Peratham W, Douglas S, Cornelia F, Yiannis A (2016) Computer visioin and natural langurage processing: recent approaches in multimedia and robotics. ACM Comput Surv 49(4):1–44
Su LF, Gao Y, Zhao XB, Wan H, Gu M, Sun JG (2017) Vertex-weighted hypergraph learning for multi-view object classification. Proc IJCAI:2779–2785
Sun X, Rosin P, Martin R, Langbein F (2007) Fast and effective feature-preserving mesh denoising. IEEE Trans Vis Comput Graph 13(5):925–938
Sun X, Rosin PL, Martin RR, Langbein FC (2008) Random walks for feature-preserving mesh denoising. Comput Aided Geom Des 25(7):437–456
Wang J, Zhang X, Yu Z (2012) A cascaded approach for feature-preserving surface mesh denoising. Comput-Aided Des 44(7):597–610
Wang FL, Qi SH, Gao G, Zhao SC, Wang XY (2016) Logo information recognition in large-scale social media data. Multimed Syst 22(1):63–73
Wang R, Zhao W, Liu S, Zhao D, Liu C (2017) Feature-preserving mesh denoising based on guided normal filtering. The Pacific-Rim Conference on Multimedia (PCM 2017), Harbin
Wei M (2015) Bi-normal filtering for mesh denoising. IEEE Trans Vis Comput Graph 21(1):43–55
Wei M, Liang L, Pang WM, Wang J, Li W, Wu H (2017) Tensor voting guided mesh denoising. IEEE Trans Autom Sci Eng 14(2):931–945
Zhang Y et al (2010) Bilateral normal filtering for mesh denoising. IEEE Trans Vis Comput Graph 17(10):1521–1530
Zhang W, Deng B, Zhang J, Bouaziz S, Liu L (2015) Guided mesh normal filtering. Comput Graph Forum 34(7):23–34
Zhao SC, Chen L, Yao H, Zhang Y, Sun X (2015) Strategy for dynamic 3D depth data matching towards robust action retrieval. Neurocomputing 151:Part2, 533–543
Zhao SC, Yao H, Jiang XL (2015) Predicting continuous probability distribution of image emotions in valence-arousal space. Proceedings of ACM MM, Australia
Zhao SC, Yao H, Jiang XL, Sun X (2015) Predicting discrete probability distribution of image emotions
Zhao SC, Yao H, Zhang YH, Wang YS, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning, signal processing 112(C):110–118
Zhao SC, Yao H, Gao Y, Ji RR, Xie WL, Jiang XL, Chua TS (2016) Predicting personalized emotion perceptions of social images. Proceedings of ACM MM, The Netherlands
Zhao SC, Yao H, Gao Y, Ding GG, Chua TS (2016) Predicting personalized image emotion perceptions in social networks. ieee transactions on affective computing, https://doi.org/10.1109/TAFFC.2016.2628787
Zhao SC, Ding GG, Gao Y, Han JG (2017) Approximating discrete probability distribution of image emotions by multi-modal features fusion. Proceedigns of IJCAI 2017 1:4669–4675
Zhao SC, Ding GG, Gao Y, Han JG (2017) Learning visual emotion distributions via multi-modal features fusion. Proc ACM MM, pp 369–377
Zhao SC, Gao Y, Han GG Ding, Chua TS (2017) Real-time multimedia social event detection in microblog. IEEE transactions on cybernetics, https://doi.org/10.1109/TCYB.2017.2762344, online available Oct. 2017
Zhao SC, Yao H, Gao Y, Ji RR, Ding GG (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645
Acknowledgements
This work is partially funded by the Major State Basic Research Development Program of China (973 Program 2015CB351804), the Science and Technology Commission of China No.17-H863-03-ZT-003-010-01 and the Natural Science Foundation of China under Grant No. 61572155 and 61672188.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, S., Rho, S., Wang, R. et al. Feature-preserving mesh denoising based on guided normal filtering. Multimed Tools Appl 77, 23009–23021 (2018). https://doi.org/10.1007/s11042-018-5735-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-5735-9