Skip to main content

Advertisement

Log in

Robust object tracking via superpixels and keypoints

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Most of the part-based methods just use the initial appearance model and feature information of the object. When the object is affected by occlusion, deformation and illumination factors, these methods can not be stable to the tracking object. In this paper, a tracking method is proposed based on keypoint matching and superpixel matching. Our method not only uses the initial feature information of the object, but also uses the feature information between adjacent frames. We use the superpixel to over-segment the candidate region which can be obtained by voting between the globally matched feature points, and then construct superpixel descriptors. The similarity between superpixels is based on the distance of the superpixel feature descriptor. Eventually, the object is selected according to the superpixel vote. Furthermore, we use qualitative and quantitative evaluations to evaluate our method on 18 challenging image sequences. Experimental results show that the proposed method outperforms 6 state-of-the-art tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006. https://doi.org/10.1109/CVPR.2006.256

  3. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bouachir W, Bilodeau GA (2015) Part-based tracking via salient collaborating features. In: 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 Jan 2015. https://doi.org/10.1109/WACV.2015.18

  5. Cai Z, Wen L, Lei Z et al (2014) Robust deformable and occluded object tracking with dynamic graph. IEEE Trans Image Proc 23(12):5497–5509

    Article  MathSciNet  MATH  Google Scholar 

  6. Derue F, Bilodeau GA, Bergevin R (2016) SPiKeS: superpixel-keypoints structure for robust visual tracking. Computer Vision and Pattern Recognition. https://arxiv.org/abs/1610.07238

  7. Fan H, Xiang J, Zhao L (2016) Robust visual tracking via bag of superpixels. Multimedia Tools Appl 75(14):8781–8798

    Article  Google Scholar 

  8. Gao J, Zhang T, Yang X et al (2017) Deep relative tracking. IEEE Trans Image Process 26(4):1845–1858

    Article  MathSciNet  Google Scholar 

  9. Hare S, Saffari A, Torr PHS (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  10. Henriques J F, Rui C, Martins P et al (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  11. Hürst W, Wezel CV (2013) Gesture-based interaction via finger tracking for mobile augmented reality. Multimedia Tools Appl 62(1):233–258

    Article  Google Scholar 

  12. Kalal Z, Mikolajczyk K, Matas J (2010) Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 Aug 2010. https://doi.org/10.1109/ICPR.2010.675

  13. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  14. Kwon J, Lee KM (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, Miami, FL, USA, 20–25 June 2009. https://doi.org/10.1109/CVPR.2009.5206502

  15. Leutenegger S, Chli M, Siegwart RY (2011) BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 Nov 2011. https://doi.org/10.1109/ICCV.2011.6126542

  16. Li A, Lin M, Wu Y et al (2016) NUS-PRO: a new visual tracking challenge. IEEE Trans Pattern Anal Mach Intell 38(2):335–349

    Article  Google Scholar 

  17. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  MathSciNet  Google Scholar 

  18. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Proceeding IJCAI'81 Proceedings of the 7th international joint conference on Artificial intelligence, vol 2. Vancouver, BC, Canada, 24–28 Aug 1981

  19. Nebehay G, Pflugfelder R (2014) Consensus-based matching and tracking of keypoints for object tracking. 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), Steamboat Springs, CO, USA, 24–26 Mar 2014. https://doi.org/10.1109/WACV.2014.6836013

  20. Nickels K, Hutchinson S (2002) Estimating uncertainty in SSD-based feature tracking. Image Vis Comput 20(1):47–58

    Article  Google Scholar 

  21. Ren X, Malik J (2007) Tracking as repeated figure/ground segmentation. 2007. CVPR '07. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. https://doi.org/10.1109/CVPR.2007.383177

  22. Wang J, Yagi Y (2014) Many-to-many superpixel matching for robust tracking. IEEE Transactions on Cybernetics 44(7):1237–1248

    Article  Google Scholar 

  23. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  24. Yang F, Lu HC, Yang M-H (2014) Robust superpixel tracking. IEEE Trans Image Process 23(4):1639–1651

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang X, Wang M, Tao D (2015) Robust visual tracking via multi-graph ranking. Neurocomputing 159:35–43

    Article  Google Scholar 

  26. Yang X, Wang M, Zhang L et al (2016) An efficient tracking system by orthogonalized templates. IEEE Trans Ind Electron 63(5):3187–3197

    Article  Google Scholar 

  27. Yuan Y, Fang J, Wang Q (2014) Robust superpixel tracking via depth fusion. IEEE Trans Circuits Syst Video Technol 24(1):15–26

    Article  Google Scholar 

  28. Zhang T, Ghanem B, Liu S, Ahuja N (2014) Partial occlusion handling for visual tracking via robust part matching. 2014 IEEE Conference on mputer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. https://doi.org/10.1109/CVPR.2014.164

  29. Zhang T, Ghanem B, Liu S et al (2016) Robust visual tracking via exclusive context modeling. IEEE Transactions on Cybernetics 46(1):51–63

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Project code (61672202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Zhang, Y., Wang, R. et al. Robust object tracking via superpixels and keypoints. Multimed Tools Appl 77, 25109–25129 (2018). https://doi.org/10.1007/s11042-018-5770-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5770-6

Keywords