Skip to main content
Log in

Adaptive saliency cuts

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Saliency cuts aims to segment salient objects from a given saliency map. The existing saliency cuts methods are fixed to the input cues. It limits their performance when the input cues are changed. In this paper, we propose a novel saliency cuts method named adaptive saliency cuts, which takes advantage of all the input cues in a unified framework and adjusts its components adaptively. Given a saliency map, we first generate segmentation seeds with adaptive triple thresholding. Next, we extend GrabCut by combining different input cues, and use it to generate a rough-labeled map of salient objects. Finally, we refine the boundaries of the salient objects with adaptive initialized segmentation, and produce an accurate binary mask. To the best of our knowledge, this method is the first adaptive saliency cuts method for different input cues. We validated the proposed method on MSRA10K and NJU2000. The experimental results demonstrate that our method outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: International Conference on Pattern Recognition, pp 1597–1604

  2. Banica D, Agape A, Ion A, Sminchisescu C (2013) Video object segmentation by salient segment chain composition. In: International Conference on Computer Vision Workshop, pp 283–290

  3. Bao BK, Liu G, Xu C, Yan S (2012) Inductive robust principal component analysis. IEEE Trans Image Process 21(8):3794–3800

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao BK, Zhu G, Shen J, Yan S (2013) Robust image analysis with sparse representation on quantized visual features. IEEE Trans Image Process 22(3):860–871

    Article  MathSciNet  MATH  Google Scholar 

  5. Blake A, Rother C, Brown M, Perez P, Torr P (2004) Interactive image segmentation using an adaptive gmmrf model. In: European Conference on Computer Vision, pp 428–441

  6. Borji A, Cheng M, Jiang H, Li J (2015) Salient object detection: A benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  Google Scholar 

  7. Carreira J, Sminchisescu C (2012) Cpmc: Automatic object segmentation using constrained parametric min-cuts. IEEE Trans Pattern Anal Mach Intell 34(7):1312–1328

    Article  Google Scholar 

  8. Cheng MM, Zhang GX, Mitra NJ, Huang X, Hu SM (2011) Global contrast based salient region detection. In: International Conference on Pattern Recognition, pp 409–416

  9. Fu Y, Cheng J, Li Z, Lu H (2008) Saliency cuts: An automatic approach to object segmentation. In: International Conference on Pattern Recognition, pp 1–4

  10. Gao Z, Zhang H, Xu G, Xue Y, Hauptmann A (2014) Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition. Signal Process 112(C):83–97

    Google Scholar 

  11. Gao Z, Zhang L, Chen MY, Hauptmann A, Zhang H, Cai AN (2014) Enhanced and hierarchical structure algorithm for data imbalance problem in semantic extraction under massive video dataset. Multimed Tools Appl 68(3):641–657

    Article  Google Scholar 

  12. Gao Z, Li S, Zhu YJ, Wang C, Zhang H (2017) Collaborative sparse representation leaning model for rgbd action recognition. J Vis Commun Image Represent 48(C):442–452

    Article  Google Scholar 

  13. Ge L, Ju R, Ren T, Wu G (2015) Interactive rgb-d image segmentation using hierarchical graph cut and geodesic distance. In: Pacific-Rim Conference on Multimedia

  14. Giroinieto X, Martos M, Mohedano E, Ponttuset J (2014) From global image annotation to interactive object segmentation. Multimed Tools Appl 70(1):475–493

    Article  Google Scholar 

  15. Guo Y, Gu X, Chen Z, Chen Q, Wang C (2007) Adaptive video presentation for small display while maximize visual information. Lect Notes Comput Sci 4781:322–332

    Article  Google Scholar 

  16. Guo Y, Gu X, Chen Z, Chen Q, Wang C (2007) Denoising saliency map for region of interest extraction. In: International Conference on Advances in Visual Information Systems, pp 205–215

  17. Guo J, Ren T, Huang L, Bei J (2017) Saliency detection on sampled images for tag ranking. Multimedia Systems:1–13. https://doi.org/10.1007/s00530-017-0546-9

  18. Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: International Conference on Pattern Recognition, pp 1–8

  19. Huang Y, Wang S (2008) Multilevel thresholding methods for image segmentation with otsu based on qpso. In: International Conference on Image and Signal Processing, pp 701–705

  20. Ju R, Liu Y, Ren T, Ge L, Wu G (2015) Depth-aware salient object detection using anisotropic center-surround difference. Signal Process Image Commun 38(C):115–126

    Article  Google Scholar 

  21. Ju R, Ren T, Wu G (2015) Stereosnakes: contour based consistent object extraction for stereo images. In: IEEE International Conference on Computer Vision, pp 1724–1732

  22. Kass M, Witkin AP, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  23. Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. European Conference on Computer Vision Workshop on Statistical Learning in Computer Vision:17–32

  24. Li S, Ju R, Ren T, Wu G (2015) Saliency cuts based on adaptive triple thresholding. In: IEEE International Conference on Image Processing, pp 4609–4613

  25. Liu J, Ren T, Wang Y, Zhong SH, Bei J, Chen S (2017) Object proposal on rgb-d images via elastic edge boxes. Neurocomputing 236:134–146

    Article  Google Scholar 

  26. Otsu N (2007) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  27. Peng H, Li B, Xiong W, Hu W, Ji R (2014) Rgbd salient object detection: A benchmark and algorithms. In: European Conference on Computer Vision, pp 92–109

  28. Rother C, Kolmogorov V, Blake A (2004) “grabcut”: Interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  29. Rother C, Minka T, Blake A, Kolmogorov V (2006) Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 993–1000

  30. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  31. Song H, Liu Z, Du H, Sun G, Le MO, Ren T (2017) Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans Image Process PP(99):1–1

    MathSciNet  Google Scholar 

  32. Tang J, Shu X, Qi G, Li Z, Wang M, Yan S, Jain R (2017) Tri-clustered tensor completion for social-aware image tag refinement. IEEE Trans Pattern Anal Mach Intell 39(8):1662–1674

    Article  Google Scholar 

  33. Wang C, Xue Y, Zhang H, Xu G, Gao Z (2016) Object segmentation of indoor scenes using perceptual organization on rgb-d images. In: International Conference on Wireless Communications and Signal Processing, pp 1–5

  34. Wang Y, Huang L, Ren T, Zhang Y (2017) Saliency cuts on rgb-d images. In: International Conference on Internet Multimedia Computing and Service

  35. Wang Y, Huang L, Ren T, Zhong SH, Liu Y, Wu G (2017) Object proposal via depth connectivity constrained grouping. In: Pacific-Rim Conference on Multimedia

  36. Xu N, Bansal R, Ahuja N (2007) Object segmentation using graph cuts based active contours. In: International Conference on Pattern Recognition, vol 2, pp II–46–53

  37. Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19 (10):2761–2773

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723

    Article  Google Scholar 

  39. Yang C, Zhang L, Lu H, Xiang R, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3166–3173

  40. Ye L, Liu Z, Li L, Shen L, Bai C, Wang Y (2017) Salient object segmentation via effective integration of saliency and objectness. IEEE Trans Multimed PP(99):1–1

    Google Scholar 

  41. Zhang Y, Hong C, Wang C (2010) An efficient real time rectangle speed limit sign recognition system, pp 34–38

  42. Zhang H, Zha ZJ, Yang Y, Yan S, Gao Y, Chua TS (2013) Attribute-augmented semantic hierarchy:towards bridging semantic gap and intention gap in image retrieval. In: Acm International Conference on Multimedia, pp 33–42

  43. Zhang H, Shang X, Luan H, Wang M, Chua TS (2016) Learning from collective intelligence: Feature learning using social images and tags. Acm Trans Multimed Comput Commun Appl 13(1):1

    Article  Google Scholar 

  44. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2814–2821

Download references

Acknowledgements

This work is supported by National Science Foundation of China (61321491, 61202320), and Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwei Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ren, T., Zhong, SH. et al. Adaptive saliency cuts. Multimed Tools Appl 77, 22213–22230 (2018). https://doi.org/10.1007/s11042-018-5859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5859-y

Keywords

Navigation