Abstract
The dehazing problem is an ill-posed and can be regularized by designing an efficient filter to refine the coarse estimated atmospheric veil. The most of existing dehazing techniques suffer from over-saturation, halo artifacts, and gradient reversal artifacts problems. In this paper, a dehazing technique is proposed to remove halo and gradient reversal artifacts problem. In this technique, a notch based integral guided filter is proposed. Moreover, the visibility restoration model is also modified to reduce over-saturation problem. The proposed dehazing technique is compared with seven well-known existing dehazing techniques over ten benchmark hazy images. The experimental results demonstrate that proposed technique is able to remove the haze from hazy images as well as significantly improve the image’s visibility. It also reveals that the restored image has little or no artifacts.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-018-5924-6/MediaObjects/11042_2018_5924_Fig13_HTML.gif)
Similar content being viewed by others
References
Anwar MI, Khosla A (2017) Vision enhancement through single image fog removal. Eng Sci Technol Int J 20(3):1075–1083
Chang HH, Chu WC (2012) Restoration algorithm for image noise removal using double bilateral filtering. J Electron Imaging 21(2):023,028–1
Chaudhury KN, Sage D, Unser M (2011) Fast bilateral filtering using trigonometric range kernels. IEEE Trans Image Process 20(12):3376–3382
Chen BH, Huang SC, Cheng FC (2016) A high-efficiency and high-speed gain intervention refinement filter for haze removal. J Display Technol 12(7):753–759
Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901
Chuangbai X, Hongyu Z, Jing Y, Pu Y (2015) Traffic image defogging method based on wls. Infrared Laser Eng 3:052
Cosmin Ancuti CDV Codruta O Ancuti (2016)
Crebolder JM, Sloan RB (2004) Determining the effects of eyewear fogging on visual task performance. Appl Ergon 35(4):371–381
Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted l1-norm regularisation. IET Image Process 11(2):145–154
Ding W, Li Y, Liu H (2016) Efficient vanishing point detection method in unstructured road environments based on dark channel prior. IET Comput Vis 10 (8):852–860
El Khoury J, Le Moan S, Thomas JB, Mansouri A (2017) Color and sharpness assessment of single image dehazing. Multimedia Tools and Applications:1–22. https://doi.org/10.1007/s11042-017-5122-y
Fan X, Shin H (2016) Road vanishing point detection using weber adaptive local filter and salient-block-wise weighted soft voting. IET Comput Vis 10(6):503–512
Fang S, Shi Q, Cao Y (2013) Adaptive removal of real noise from a single image. J Electron Imaging 22(3):033,014–033,014
Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72
Fattal R (2014) Dehazing using color-lines. ACM Trans Graph (TOG) 34(1):13
Fu L, Peng G, Song W (2016) Histogram-based cost aggregation strategy with joint bilateral filtering for stereo matching. IET Comput Vis 10(3):173–181
Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155
Gibson KB, Nguyen TQ (2013) An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J Image Video Process 2013(1):37
Gu X, Huang X, Tokuta A (2017) Multiscale spatially regularised correlation filters for visual tracking. IET Comput Vis 11(3):220–225
Guo JM, Syue JY, Radzicki V, Lee H (2017) An efficient fusion-based defogging. IEEE Transactions on Image Processing
Guo L, Li S, Hu W, Wu J, Tu B, He W, Ou X, Zhang G (2017) Sub-pixel level defect detection based on notch filter and image registration. International Journal of Pattern Recognition and Artificial Intelligence, pp 1854016
Hao D, Li Q, Li C (2017) Single-image-based rain streak removal using multidimensional variational mode decomposition and bilateral filter. J Electron Imaging 26(1):013,020–013,020
Hautière N, Tarel JP, Aubert D (2007) Towards fog-free in-vehicle vision systems through contrast restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp 1–8
Hautiere N, Tarel JP, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereology 27(2):87–95
He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353
Jang DW, Park RH (2017) Colour image dehazing using near-infrared fusion. IET Image Process 11(8):587–594
Jha DK, Gupta B, Lamba SS (2016) l2-norm-based prior for haze-removal from single image. IET Comput Vis 10(5):331–341
Jiang B, Meng H, Zhao J, Ma X, Jiang S, Wang L, Zhou Y, Ru Y, Ru C (2017a) Single image fog and haze removal based on self-adaptive guided image filter and color channel information of sky region. Multimedia Tools and Applications, pp 1–18
Jiang Y, Sun C, Zhao Y, Yang L (2017) Fog density estimation and image defogging based on surrogate modeling for optical depth. IEEE Trans Image Process 26(7):3397–3409
Kishan H, Seelamantula CS (2015) Patch-based and multiresolution optimum bilateral filters for denoising images corrupted by gaussian noise. J Electron Imaging 24(5):053,021–053,021
Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528
Li B, Wang S, Zheng J, Zheng L (2014) Single image haze removal using content-adaptive dark channel and post enhancement. IET Comput Vis 8(2):131–140
Li J, Zhang H, Yuan D, Sun M (2015) Single image dehazing using the change of detail prior. Neurocomputing 156:1–11
Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image process 24(1):120–129
Lian X, Pang Y, Yang A (2017) Learning intensity and detail mapping parameters for dehazing. Multimedia Tools and Applications:1–26. https://doi.org/10.1007/s11042-017-5142-7
Liu W, Chen X, Chu X, Wu Y, Lv J (2016) Haze removal for a single inland waterway image using sky segmentation and dark channel prior. IET Image Process 10(12):996–1006
Liu X, Zhang H, Tang YY, Du JX (2016) Scene-adaptive single image dehazing via opening dark channel model. IET Image Process 10(11):877–884
Long J, Shi Z, Tang W, Zhang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Lett 11(1):59–63
McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, p 421
MODIS (2016) Global land cover facility. http://glcf.umd.edu/
Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724
Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE Workshop on color and photometric Methods in computer Vision. France, vol 6, p 1
Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: 1999. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, vol 2, pp 820–827
Nishino K, Kratz L, Lombardi S (2012) Bayesian defogging. Int J Comput Vis 98(3):263–278
Papari G, Idowu N, Varslot T (2016) Fast bilateral filtering for denoising large 3d images. IEEE Trans Image Process 26(1):251–261
Park J, Han JH, Lee BU (2014) Performance of bilateral filtering on gaussian noise. J Electron Imaging 23(4):043,024–043,024
Riaz I, Fan X, Shin H (2016) Single image dehazing with bright object handling. IET Comput Vis 10(8):817–827
Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50
Sheng H, Zhang S, Cao X, Fang Y, Xiong Z (2017) Geometric occlusion analysis in depth estimation using integral guided filter for light-field image. IEEE Trans Image Process 26(12):5758–5771
Singh D, Kumar V (2017) Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Computer Vision
Singh D, Kumar V (2018) Defogging of road images using gain coefficient-based trilateral filter. J Electron Imaging 27(1):013004
Singh D, Kumar V (2017) Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci J 65(5):282–292
Singh D, Kumar V (2017) Comprehensive survey on haze removal techniques. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-5321-6
Singh D, Kumar V (2017) Modified gain intervention filter based dehazing technique. J Mod Opt 64(20):2165–2178
Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114
Soumya T, Thampi SM (2016) Recolorizing dark regions to enhance night surveillance video. Multimedia Tools and Applications 76(22):1–17
Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp 2201–2208
Tripathi AK, Mukhopadhyay S (2012) Removal of fog from images: A review. IETE Techn Rev 29(2):148–156
Wang D, Zhu J (2015) Fast smoothing technique with edge preservation for single image dehazing. IET Comput Vis 9(6):950–959
Wang JB, He N, Zhang LL, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728
Wang L, Xiao L, Liu H, Wei Z (2015) Local brightness adaptive image colour enhancement with wasserstein distance. IET Image Process 9(1):43–53
Wang W, Hua M (2013) Extracting dominant textures in real time with multi-scale hue-saturation-intensity histograms. IEEE Trans Image Process 22(11):4237–4248
Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Autom Sin 4(3):410–436. https://doi.org/10.1109/JAS.2017.7510532
Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimed 19(6):1142–1155
Wang Z, Feng Y (2014) Fast single haze image enhancement. Comput Electr Eng 40(3):785–795
Wang Z, Hardeberg JY (2012) Development of an adaptive bilateral filter for evaluating color image difference. J Electron Imaging 21(2):023,021–1
Xiang R, Zhu X, Wu F, Jiang X, Xu Q (2017) Guided filter based on multikernel fusion. Journal of Electronic Imaging 26(3):33027
Xie B, Guo F, Cai Z (2010) Improved single image dehazing using dark channel prior and multi-scale retinex. In: 2010 International Conference on Intelligent System Design and Engineering Application (ISDEA). IEEE, vol 1, pp 848–851
Xu H, Guo J, Liu Q, Ye L (2012) Fast image dehazing using improved dark channel prior. In: 2012 IEEE International Conference on Information Science and Technology. IEEE, pp 663–667
Xu Y, Wen J, Fei L, Zhang Z (2016) Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4:165–188
Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications (IBICA). IEEE, pp 17–20
Yoon SM (2016) Visibility enhancement of fog-degraded image using adaptive total variation minimisation. The Imaging Sci J 64(2):82–86
Zhang L, Shen P, Peng X, Zhu G, Song J, Wei W, Song H (2016) Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process 10(11):840–847
Zhang W, Hou X (2017) Light source point cluster selection-based atmospheric light estimation. Multimedia Tools and Applications 77(3):1–12
Zheng L, Shi H, Gu M (1740) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B 31(19-21):044
Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533
Zhu X, Xiang R, Wu F, Jiang X (1740) Single image haze removal based on fusion darkness channel prior. Mod Phys Lett B 31(19-21):037
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Singh, D., Kumar, V. Dehazing of outdoor images using notch based integral guided filter. Multimed Tools Appl 77, 27363–27386 (2018). https://doi.org/10.1007/s11042-018-5924-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-5924-6