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Abstract- It is of great interest in spectral-spatial features classification for hyperspectral 

images (HSI) with high spatial resolution. This paper presents a novel Spectral-spatial 

classification method for improving hyperspectral image classification accuracy. 

Specifically, a new texture feature extraction algorithm exploits spatial texture feature 

from spectrum is proposed. It employs local binary patterns (LBPs) in order to extract 

the image texture feature with respect to spectrum information diversity (SID) to 

measure the differences of spectrum information. The classifier adopted in this work is 

support vector machine (SVM) because of its outstanding classification performances. 

In this paper, two real hyperspectral image datasets are used for testing the performance 

of the proposed method. Our experimental results from real hyperspectral images 

indicate that the proposed framework can enhance the classification accuracy compare 

to traditional alternatives. 

Key Words-Hyperspectral image classification; spectral-spatial analysis; local binary 

patterns; spectrum information diversity; support vector machine.1 

I Introduction 

Hyperspectral image (HSI) captures reflectance values from Visible to Infrared spectrum 
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which covers a wide spectral range with hundreds of bands for each pixel in the image. This rich 

spectral information provides possibility to distinguish different materials spectrally. HSI 

classification plays an important role in hyperspectral image application, such as crop analysis, 

plant and mineral identification, among others.  

In traditional HSI classification systems, classifiers are only able to consider spectral 

signatures without considering the correlations between the pixel of interest and its neighboring 

pixels 1 , 2 , 3 . Numerous classification techniques for HSI have been developed such as 

K-nearest-neighbor (K-NN) classifier4 , maximum-likelihood estimation (MLE)5, artificial neural 

networks6 , kernel-based techniques7 . In particular, support vector machines 8(SVMs) have 

demonstrated excellent performance for HSI classification. However, it is a very challenging task 

due to the tiny distinction among spectral signatures of various types in same families, such as 

tillage in the corn fields. Meanwhile the spatial resolution is increasing during last decades, it is of 

great interest in exploiting spectral-spatial proposing to improve the accuracy of HSI 

classification9, 10. 

There are some spectral-spatial classifiers developed for Features-level fusion. For example, 

Generalized Composite Kernel (GCK) for combination of both spectral and spatial information 

were employed by multinomial logistic regression and support vector machine are introduced 

in[10] and[11]. In addition to the composite classifier framework, many researches focus on 

spatial feature extraction. For instance, morphological profiles [MPs]12 and attribute profiles [APs] 

13have been successfully employed to model structural information in hyperspectral image 

processing. Local binary pattern operator, which extract texture feature in spatial domain, is also 

used in HSI for classification 14 , 15 . Meanwhile, multi-features 16  and multi-hypothesis 17 



 

 

pre-processing are present in literature. 

As we all know, the texture feature is one of the key feature to display image characteristics. 

A batch of algorithms including gray-level co-occurrence matrix (GLCM), Gabor texture features, 

gradient orientation features and local binary pattern operator (LBP) are proposed to extract image 

texture feature such as edges, corners, and knots. Hashing methods1819,20,21, which encode 

high-dimensional image descriptors as compact binary strings, can be considered as new feature to 

be used for HSI classification. The conventional LBP is a simple yet efficient advanced operator to 

describe local spatial pattern by binary threshold with the center pixel value. In recent years, LBP 

has been widely used in image classification22 and detection23. It has been proposed to be used in 

hyperspectral image classification recently. In [15], the LBP and Global Gabor filter(GGF) are 

employed to extract spatial texture information in a set of selected bands firstly, then the 

feature-level fusion and decision-level fusion are investigated on the extracted multiple features. 

Feature-level fusion combines different feature vectors together into a single feature vector. 

Decision-level fusion performs on probability outputs of each individual classification pipeline 

and combines the distinct decisions into a final one with the LOGP. Unfortunately, the LBP texture 

feature is extracted by calculating the histogram of local region, therefore, the time-consumption 

will increases rapidly with bands number increases. In order to overcome classification problem 

above in HSI, a new texture feature extraction algorithm which exploits spatial texture feature 

from spectrum domain is proposed in this paper. The proposed classification method can extract 

the texture feature using the algorithm proposed in this paper, then, the extracted spatial features 

of central pixel can be stacked with its spectral features to develop a discriminative classifier. 

Compared the results of experiments on two HSI datasets between the traditional LBP feature 



 

 

extraction-based classification and the algorithm proposed in this paper, the proposed texture 

feature extraction leads to a substantial improvement in classification performance and 

time-consuming. 

The structure of this paper is organized as follows. In section 2, we briefly introduces the 

previous related researches. In section 3, the proposed mathematical texture feature extraction is 

discussed. Section 4 provides a detailed description of the proposed classification method and also 

shows classification results using the real HSI. Finally, Section 5 concludes this paper with some 

remarks. 

2. Related Work 

In this section, we briefly review the conventional LBP method and SVM classifier.  

A. A Review of LBP 

Local binary pattern (LBP)24 measures a local neighborhood around each central pixel 

whether the central pixel has a larger intensity value or not firstly, then generate a binary code for 

summarizing local gray-level structure. The basic LBP method considers a small circularly a small 

circularly symmetric neighborhood as P , along with selected neighbors
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Where ,P R  denote the number of sampling points and radius of a circle based on a circularly 

symmetric neighbor set of central pixel ct . The neighboring pixels 
1

0{ }P

i it 

 , and ( )s x  takes 1 

if 0x   and 0  otherwise. 



 

 

After forming an LBP code image for each band of hyperspectral image, the texture feature 

formed as the LBP histogram is generated for each local patch centered at a pixel of interest. The 

time-consumption will go up rapidly with the bands number increase. To solve this problem, band 

selection algorithm are adopted firstly and the texture feature based on LBP is extracted from the 

selected bands. The PCA is most popular algorithm for dimension reduction and first one to three PC 

images are employed to the spatial feature extraction. Although the PCA method seems reasonable 

because the selected bands images are optimal for data representation, it should be noted that some 

important information is still contained in some other image bands.  

B. SVM classifier 

There are many principles to distribute the data points to a model. One of the most popular 

classification methods is support vector machine (SVM)25, which is often employed for HSI image 

classification. The key idea behind a kernel version of SVM is to map the data from its original 

input space into a high-dimensional kernel-induced feature space where classes may become more 

separable. SVM model is constructed on determining an optimal hyper-plane in the kernel-induced 

space by solving 
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Subject to the constraints: 

  , 1i i iy x p                                                      (3) 

For 0i   and 1,...,i n  , where  is normal to the optimal decision hyper-plane 

(i.e.  , 0X p    ), n  denotes the number of samples, p  is the bias term,   is the 

regularization parameter which controls the generalization capacity of SVM, and i is the 

positive slack variable allowing us to accommodate permitted errors appropriately. 



 

 

The problem above can be solved by introducing Lagrange multipliers with slack variables 

and regularization form 
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There are some commonly implemented kernel functions like the polynomial kernel and the 

RBF kernel. In this paper, RBF is considered and it is represented as 
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Finally, the decision function is represented as  
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3 Texture feature for Hyperspectral image 

A. Extended LBP with Respect to SID 

To calculate spectrum-based LBP, we need to calculate the similarity firstly. In this paper, the 

Spectral information divergence (SID)26 is employed to quantify differences between reflectance 

spectrums in both magnitude and direction dimensions. Some other similarity methods for two 

spectrums are also used in this step such as Spectral angle Cosine, etc.  

Assume that hyperspectral pixel 1 2( , , , )LX x x x   , each component lx  is the pixel of 

band lB  acquired at a particular wavelength l  . 1{ }L

l l   
is a set of L  wavelengths. Suppose 

x  as a random variable by defining an appropriate probability space ( , , )P   associated with 

it, where   is a sample space,   is an event space, and P  is a probability measure. 
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 Denoted another hyperspectral pixel 1 2( , , , )LY y y y   with 

probability 1 2( , , , )LQ q q q  , vector SID is calculated by Eq. (3). 

( , ) ( ) ( )SID X Y D X Y D Y X                                            (8) 
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Supposed that central hyperspectral pixel is cX  and the neighborhood hyperspectral pixels 

is 1 2{ , , , }NY Y Y   , Which N  is the number of neighborhood pixels. The threshold for binary is 

chosen by calculating the Mean of SID, shown in Eq. (4).  
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Then the SID_LBP is shown in Eq. (5) 
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B. Texture Feature extraction by SID-LBP 

Traditional texture feature extraction on LBP is generated for the center pixels by calculating 

the histograms in its corresponding local LBP image patch. The texture feature extraction on 

SID_LBP is also done by histograms in its corresponding local LBP image patch.  

Note that patch size is a user-defined parameter, and the various patch sizes will affect the 

final classification accuracy. 

Figure 1 illustrates the implementation of traditional LBP feature extraction and SID_LBP 



 

 

feature extraction. Fig.1 (a) gives the implementation of LBP feature extraction applied to each 

selected band image. Fig.1 (b) gives the SID-LBP features extraction.  

HighSpectral Image 
Datecube

(145X145X200)
Selected Bands Images LBP images of Selected Bands images LBP Image Patch LBP Histogram

LBP HistogramLBP Image PatchLBP images of Datacube
HighSpectral Image 

Datecube
(145X145X200)

Band 
Selection 
Method

LBP 
Operator

SID_LBP 
Operator

Figure 1 Comparison on implementation of traditional LBP and SID-LBP feature extraction. (a) Implementation of traditional LBP 

feature extraction. (b) Implementation of SID-LBP feature extraction   

Compared to the conventional LBP-based classification framework, there are three main 

advantages on SID_LBP process. Firstly, the proposed SID_LBP texture feature extraction is done 

on original data cube which the total bands information are considered without any band selection 

methods, therefore, there is less time-consuming and less information loss. Secondly, the 

histogram operator obtained from each LBP image patch of every selected band image in 

traditional LBP feature method which the computation time will increased rapidly with the bands 

image number and LBP image patch size, however, the histogram calculation is only done on one 

image in SID_LBP operator, therefore, SID_LBP method has higher accuracy than one band 

selection for traditional LBP feature method and less time-consuming than multi-bands selection 

of traditional LBP feature. Thirdly, as all LBP histograms are stacked as texture feature for 

classification, the spatial feature dimensions will increase rapidly with the number of selected 

bands image for traditional LBP feature. SID_LBP is only done on original data cube and only one 



 

 

LBP histogram is produced. 

In this paper, a novel classification method is proposed, which consists of spatial texture 

feature by SID_LBP and classification step. The procedure is as follows. 

Algorithm: SID_LBP_SVM classification  

Input: Training set with N samples for each class and texture patch size sets W 

Output: Classification maps and accuracy 

1Calculate the texture feature histograms at window W by SID_LBP 

2 Calculate spectral channel features  

3 Normalize, stack and reduce spatial-spectral features 

4 Train a classification model 

5Classify the test set and assess accuracy 

6 Return the classification maps and accuracy 

4. Experimental Results 

A. Data Sets 

In this section, we evaluate the proposed approach using two real HSI data sets. These data 

sets include different contexts, different spatial resolutions and different bands in order to assess 

the performance of proposed approach. 

The first data was collected by Airborne Visible/Infrared Image Spectrometer (AVIRIS) over 

Northwest Indiana, Indiana, USA, in June 1992. The image presents a classification scenario with 

the spatial coverage of 145 145  pixels covering 16 classes of different crops at 20-m spatial 

resolution and 220 bands in 0.4 to 2.45 m  region of visible and infrared spectrum. After 

calibrating and noisy bands were removed, 200 bands were remained to experiment. 



 

 

 The second data set was collected by the Reflective Optics System Imaging Spectrometer 

sensor covering the city of Pavia, Italy. The data set consists of 115 spectral bands with 

610 340  pixels covering 9 classes with a spectral range from 0.43 to 0.86 m  and spatial 

resolution of 1.3 m . After removing 12 noisy channels, the remaining 103 bands were used for the 

test.   

All the datasets present the challenging classification scenarios. The class information of 

three images is detailed in Table 1, Table2, and Fig.1 and Fig.2.  

 

 

Table 1 

The class information of Indian Pines Data set 

Order Class name Number of 

samples 

1 Alfalfa 54 

2 Corn-notill 1034 

3 Corn-mintill 834 

4 Corn 234 

5 Grass-pasture 497 

6 Grass-trees 747 

7 Grass-pasture-mowed 26 

8 Hay-windrowed 489 

9 Oats 20 

10 Soybean-notill 968 

11 Soybean-mintill 2468 

12 Soybean-clean 614 

13 Wheat 212 

14 Woods 1294 

15 Building-grass-trees-drives 380 

16 Stone-steel-towers 95 

 Total 10366 

 

 

 

Table 2 

The class information of Pavia Data set 

Order Class name Number of 

samples 

1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Metalsheets 1345 

6 Bare soil 5029 

7 Bitumen 1330 

8 Bricks 3682 

9 shadow 947 

 Total 42776 

 



 

 

 

(a)                       (b)                      (c)                        (d) 

Figure 2.The 10th band of Indian Pine image; (b) Indian Pine ground survey; (c)10% training pixels;(d) 90% test pixels 

 

  

训练样本集

 

测试样本集

 

(a)                    (b)                  (c)                     (d) 

Figure 3.(a)The 10th band of the University of Pavia;(b) the University of Pavia ground survey(c)10% training pixels;(d) 90% 

test pixels 

B. Experimental Setup 

In order to show the effectiveness of the proposed approach, the traditional LBP method is 

employed. There are some parameters should be considered in both traditional LBP method and 

SID_LBP method which is proposed in this paper. For example, the number of selected bands of 

images, the patch size of LBP operator and Kernel of SVM. In this paper, overall accuracy (OA), 

Kappa statistic (Kappa) and time consuming are estimated from confusion matrix for classification 

assessment. Concerning the SVM classifier, Tenfold cross-validation is employed to optimize the 

related parameters. The comparison is conducted on Windows 7 PC (Intel(R) Core(TM) 

i5-1.7GHZ 2.40GHZ with4.0GB RAM).  

In order to show the performance of our proposed approach under different training 



 

 

conditions and scenarios, there are two methods for training samples selection; one is selecting 

training samples as ratio of training samples and total samples. The ratio is range from 1% to 30 

with step 1%. The other method is same number training samples in different classes with number 

starts from 5 to 75. 

The PCA is employed for HSI dimension reduction and bands selection for traditional LBP. 

The impact of patch size from traditional LBP and SID_LBP is also needed to investigate. Take 

Indian Pine dataset as an example, when we selected the first PCs as the source, the impact of 

patch size on classification is shown in Fig.4. 

As shown in Fig.4, it can be seen that the accuracy tends to be the maximum with 17 17  

or larger. Therefore, we investigate the impact of the PCs’ number with the 17 17  patch size. 

To investigate the effects of number of PCs for traditional LBP, the classification accuracy 

and time-consuming on patch size is 17 17 with different PCs number are shown in Fig.5, 

Table3.  

 

 
Figure 4. Classification performance versus different patch sizes and different training samples 

(a)Overal accuracy versus different patch sizes and different training samples selected as ratio of training samples and total samples;(b) Kappa 

accuracy versus different patch sizes and different training samples selected as ratio of training samples and total samples; (c) Overal accuracy 

versus different patch sizes and different training samples selected same number training samples in different classes;(d) Kappa accuracy versus 



 

 

different patch sizes and different training samples selected same number training samples in different classes; 

 

 
Figure 5. Classification performance versus different selected bands number and different training samples with the 17 17  patch size 

(a): Overal accuracy versus d different selected bands number and different training samples selected as ratio of training samples and total 

samples with the 17 17  patch size;(b) Kappa accuracy versus different selected bands number and different training samples selected as ratio 

of training samples and total samples with the 17 17  patch size; (c) Overal accuracy versus different selected bands number and different 

training samples selected same number training samples in different classes with the 17 17  patch size;(d) Kappa accuracy versus different 

selected bands number and different training samples selected same number training samples in different classes with the 17 17  patch size; 

 
Table 3 Time-consuming versus different selected bands number and different training samples 

            
1 2 3 4 5 6 7 8 9 10 

samples selected as ratio of training 

samples and total samples 
0.6167 0.9934 1.4711 1.8363 2.2492 2.7788 3.1375 3.5714 4.0166 4.4571 

samples selected same number 

training samples in different classes 
0.9048 0.9983 1.3909 1.8908 2.2741 2.8497 3.0978 3.5740 4.0126 4.5305 

From the Figures and Tables, we can see that the accuracy difference is not obvious above the 

3 PCs.  Note that the LBP features dimension and time-cost are dramatically increased with 

selected bands number. Therefore, we employed the 3 PCs and 17 17  patch size for traditional 

LBP.  

C. Numerical Results 

1)  Classification of Indian Pines Image 

In this set of experiments, we first evaluated the classification accuracy of the proposed 

approach using the AVIRIS Indian Pines data set in Fig.2. Table 4 shows the OAs (in percent) in 

traditional LBP and SID_LBP. In order to show the performance of our proposed approach under 

Bands number 

Samples selection 

Time-consuming (s) 



 

 

different training conditions and scenarios, in the second experiments, we choose same training 

samples per class for classification assessment. Although the training samples are chosen 

randomly, we chosen the same training samples for comparison between two methods. 

There are several conclusions can obtained from the Tables below. First of all, SID_LBP 

method has much better performance than original spectral signatures only. For example, in Table 

v, LBP-SVM (1PCs) offers 3.83% higher accuracy than the original spectrum classification in 1% 

training samples and 16.18% in 5 samples chosen per class. With the training samples number 

increase, LBP-SVM only use 1PCs offers over 20% higher accuracy than original spectrum 

classification; LBP-SVM (3PCs) , SID_LBP-SVM, LBP-Spe-SVM (1PCs) , LBP-Spe-SVM 

(3PCs) and SID-LBP-Spe-SVM offers 6.8%, 10.96%,20.23%, 21.77% and 23.96% higher 

accuracy individually in 1% training samples.  

Secondly, spectral-spatial feature classification exhibits the potential to improve the 

classification results compared with using spectrum information and spatial information. For 

example, LBP-Spe-SVM (1PCs), LBP-Spe-SVM (3PCs) and SID_LBP-Spe-SVM which joined 

the spectrum and spatial information offers higher accuracy than Spe-SVM which is only using 

spectrum information and LBP-SVM (1PCs), LBP -SVM (3PCs) and SID_LBP-SVM which are 

only using spatial information. 

Thirdly, the SID_LBP proposed exhibits the potential to improve the classification results 

than using the traditional LBP. For example, SID_LBP–SVM offers over 7.07% higher accuracy 

than LBP-SVM (1PCs) and 4.17% higher than LBP-SVM (3PCs) , and SID-LBP-Spe-SVM is 

3.67% higher than LBP-Spe-SVM (1PCs) and 2.19% higher than LBP-Spe-SVM (3PCs) in 1% 

training samples; SID_LBP–SVM offers over 0.44% higher accuracy than LBP-SVM (1PCs) and 



 

 

0.24% higher than LBP-SVM (3PCs) , and SID-LBP-Spe-SVM is 2.98% higher than 

LBP-Spe-SVM (1PCs) and 0.79% higher than LBP-Spe-SVM (3PCs) in 5 training samples per 

class.  

Furthermore, it is noticeable that SID_LBP is more effective than traditional LBP (1PCs) and 

also can save more time than traditional LBP (3PCs). According to what we analyzed before, the 

LBP (3PCs) will extract the texture feature three times than SID_LBP method while the texture 

feature is done by calculating the histograms which is time-consuming. 

Finally, it is observed that the obtained results which involved the spatial information are 

much better than the spectral information alone. This demonstrates that LBP is a highly 

discriminative spatial operator.     

We also can get information that the SID_LBP method gets less and less effeteness with the 

samples number increases. 

Table 4 Overal classifications accuracy (in percent) obtained for different classification methods when applied to 

the AVIRIS Indian Pines Hyperspectral data set using different percent training samples  
Samples 

/total Samples 
Spe-SVM 

LBP-SVM 
(1PCs) 

LBP-SVM 
(3PCs) 

SID-LBP-SVM 
LBP-Spe-SVM 

(1PCs) 
LBP-Spe-SVM 

(3PCs) 
SID-LBP- 
Spe-SVM 

1 49.01 52.84 55.80 59.97 69.24 70.78 72.97 

2 53.31 81.82 82.32 83.31 86.01 87.75 84.74 

3 55.37 81.47 86.49 86.33 86.80 89.04 88.77 

4 60.19 82.69 89.18 89.96 89.47 92.25 92.26 

5 58.84 84.98 88.15 90.66 89.24 91.67 93.63 

6 61.82 85.41 89.69 93.77 91.21 92.83 94.64 

7 64.25 87.69 95.52 95.32 93.33 97.14 97.56 

8 60.62 87.22 94.77 94.98 93.12 96.15 97.06 

9 56.35 87.77 96.32 96.14 90.24 95.78 97.73 

10 63.15 95.38 96.45 96.51 96.72 97.16 97.60 

11 66.99 93.11 95.07 95.94 96.03 96.70 97.41 

12 63.91 95.85 97.84 97.11 97.17 97.46 98.22 

13 68.40 94.08 97.12 97.87 97.13 97.78 97.98 

14 66.74 92.26 97.45 97.14 95.59 97.85 98.05 

15 58.04 94.20 98.06 98.06 95.94 97.81 98.94 

16 70.12 94.34 97.77 98.07 96.71 98.34 98.84 

17 67.12 96.54 98.83 98.22 97.48 97.78 98.75 

18 72.91 94.00 97.86 98.05 96.93 98.73 99.06 

19 70.60 96.08 98.04 98.36 97.60 98.75 98.48 

20 60.35 96.16 98.08 98.18 96.94 97.81 99.32 

21 72.69 97.44 98.34 98.56 98.47 99.21 99.12 

22 66.47 97.02 98.85 98.99 97.43 98.60 99.29 

23 71.69 96.46 98.60 98.95 97.63 98.81 99.10 

24 67.71 93.48 98.47 98.99 96.39 98.35 99.49 

25 73.17 97.66 98.97 99.13 98.32 99.22 99.09 

26 73.42 96.00 98.65 98.66 97.20 98.84 99.56 



 

 

27 72.52 96.54 98.90 99.09 97.43 99.41 99.61 

28 72.68 97.22 98.59 98.98 97.99 98.81 99.52 

29 64.79 97.48 99.24 99.33 97.75 99.10 99.52 

30 76.22 96.36 99.71 99.72 97.19 99.20 99.56 
 

Table 5 Overal classifications accuracy (in percent) obtained for different classification methods when applied to 

the AVIRIS Indian Pines Hyperspectral data set using different percent training samples  
Samples 

Per class 
Spe-SVM 

LBP-SVM 

(1PCs) 

LBP-SVM 

(3PCs) 

SID-LBP-

SVM 

LBP-Spe-SVM 

(1PCs) 

LBP-SVM 

(3PCs) 

SID-LBP- 

Spe-SVM 

5 43.73 59.70 59.90 60.14 68.95 71.14 71.93 

 10 46.97 79.17 79.66 79.92 83.59 85.47 84.71 

15 52.08 82.96 82.56 82.61 86.90 88.39 87.41 

20 53.73 84.59 82.11 84.81 89.56 88.86 90.84 

25 57.71 87.48 92.07 87.32 92.89 95.85 92.45 

30 59.03 86.06 91.51 85.47 88.50 95.26 88.55 

35 55.39 87.71 92.12 89.18 90.14 94.91 91.71 

40 62.37 90.98 92.97 91.76 94.13 95.37 94.57 

45 58.54 87.64 93.24 93.99 92.52 95.43 96.00 

50 61.60 92.07 92.68 92.69 95.15 95.68 94.89 

55 61.73 90.98 94.19 94.31 93.94 96.68 96.34 

60 63.56 91.69 95.12 93.05 94.27 96.85 95.40 

65 61.85 91.94 95.32 93.26 94.23 96.76 95.37 

70 61.38 94.61 95.76 95.88 96.37 97.64 97.52 

75 64.19 92.43 96.57 96.32 95.16 97.99 97.91 

2)  Classification of University of Pavia Image 

In this set of experiments, we first evaluated the classification accuracy of the proposed 

approach using the ROSIS university of Pavia data set in Fig.3. Table 6 shows the OAs (in percent) 

in traditional LBP and SID_LBP. In order to show the performance of our proposed approach 

under different training conditions and scenarios, in the second experiments, we choose same 

training samples per class for classification assessment. 

 There are several conclusions can be obtained from the Tables below. First of all, With the 

LBP features, the performances are much better than with the original spectral signatures only; for 

example, in Table 6, LBP-SVM (1PCs) offers 3.94% high accuracy than the original spectrum 

classification in 1% training samples and 13.81% in 5 samples chosen per class. With the training 

samples number increase, LBP-SVM which only use 1PCs offers over 20% high accuracy than 

original spectrum classification; LBP-SVM (3PCs) , SID_LBP-SVM, LBP-Spe-SVM (1PCs) , 

LBP-Spe-SVM (3PCs) and SID-LBP-Spe-SVM offers 4.99%, 9.94%,16.95%, 18.70% and 

23.80% high accuracy individually than the original spectrum classification in 1% training 

samples.  



 

 

Secondly, spectral-spatial feature classification exhibits the potential to improve the 

classification results than only using spectrum information and spatial information. For example, 

LBP-Spe-SVM (1PCs), LBP-Spe-SVM (3PCs) and SID_LBP-Spe-SVM that join the spectrum 

and spatial information offers higher accuracy than Spe-SVM only using spectrum information 

and LBP-SVM (1PCs), LBP -SVM (3PCs) and SID_LBP-SVM only using spatial information. 

Thirdly, the SID_LBP proposed exhibits the potential to improve the classification results 

than using the traditional LBP. For example, SID_LBP–SVM offers over 5% higher accuracy than 

LBP-SVM (1PCs) and 4.95% higher than LBP-SVM (3PCs) , and SID-LBP-Spe-SVM is 6.85% 

higher than LBP-Spe-SVM (1PCs) and 6.10% higher than LBP-Spe-SVM (3PCs) in 1% training 

samples; SID_LBP–SVM offers over 1.73% higher accuracy than LBP-SVM (1PCs) and 0.49% 

higher than LBP-SVM (3PCs) , and SID-LBP-Spe-SVM is 3.26% higher than LBP-Spe-SVM 

(1PCs) and 0.48% higher than LBP-Spe-SVM (3PCs) in 5 training samples per class.  

Furthermore, it is noticeable that SID_LBP is more effective than traditional LBP (1PCs) and 

time-saving than traditional LBP (3PCs). Accordance to what we analyzed before, the LBP (3PCs) 

will extract the texture feature three times than SID_LBP method while the texture feature is done 

by calculating the histograms which is time-consuming. 

Finally, it is observed that the obtained results involving the spatial information are much 

better than the spectral information alone. This demonstrates that LBP is highly discriminative 

spatial operator.     

We also can get information that the SID_LBP method gets less and less effeteness with the 

samples number increases. 

Table 6 Overal classifications accuracy (in percent) obtained for different classification methods when applied to the 

AVIRIS Indian Pines Hyperspectral data set using different percent training samples  
Samples 

/total Samples 
Spe-SVM 

LBP-SVM 
(1PCs) 

LBP-SVM 
(3PCs) 

SID-LBP-SVM 
LBP-Spe-SVM 

(1PCs) 
LBP-Spe-SVM 

(3PCs) 
SID-LBP- 
Spe-SVM 



 

 

1 51.29 55.23 56.28 61.23 68.24 69.99 75.09 

2 56.44 71.82 79.72 84.12 88.01 87.75 88.09 

3 58.72 79.57 83.66 87.22 85.12 89.04 89.97 

4 61.65 82.78 83.12 91.02 89.44 92.12 92.96 

5 62.64 83.67 89.65 89.11 87.22 91.37 93.12 

6 63.55 85.52 88.22 92.66 89.17 92.35 94.57 

7 65.27 86.99 93.12 93.12 93.01 97.42 97.99 

8 62.11 87.75 94.99 95.12 93.19 96.67 97.62 

9 60.96 88.93 95.17 96.56 95.24 95.12 97.07 

10 62.25 91.28 96.37 95.49 93.72 97.56 97.99 

11 66.99 93.58 95.33 95.37 93.03 96.99 97.91 

12 63.91 92.66 95.84 97.29 96.11 97.02 98.56 

13 65.92 95.18 96.12 97.22 97.09 97.29 98.98 

14 67.29 93.45 97.41 98.23 94.29 97.69 98.92 

15 66.09 94.02 97.02 98.01 95.74 97.99 98.99 

16 70.25 94.12 96.01 98.59 95.71 98.96 99.02 

17 70.09 95.99 97.12 98.23 96.48 97.02 98.99 

18 71.11 94.09 96.11 98.33 95.12 98.58 99.36 

19 72.99 96.22 98.31 98.45 97.69 98.65 98.96 

20 70.01 96.34 98.39 98.61 96.48 97.41 98.93 

21 73.67 97.42 98.54 98.72 98.11 98.12 99.36 

22 70.28 97.83 98.55 98.67 96.21 98.23 99.69 

23 78.99 96.16 98.12 98.23 97.09 98.71 99.90 

24 76.38 93.38 98.22 98.99 95.29 98.61 99.59 

25 75.29 97.35 98.23 99.45 97.32 99.01 99.49 

26 76.29 96.28 98.23 98.79 97.98 98.45 99.66 

27 77.79 96.17 98.88 99.66 97.64 99.66 99.69 

28 77.89 97.96 98.56 98.23 97.27 98.21 99.52 

29 78.25 97.21 99.12 99.33 97.59 99.39 99.59 

30 78.99 96.09 99.11 99.79 97.74 99.45 99.69 
 

Table 7 Overal classifications accuracy (in percent) obtained for different classification methods when applied to 

the AVIRIS Indian Pines Hyperspectral data set using different percent training samples  
Samples 

Per class 
Spe-SVM 

LBP-SVM 

(1PCs) 

LBP-SVM 

(3PCs) 

SID-LBP-

SVM 

LBP-Spe-SVM 

(1PCs) 

LBP-SVM 

(3PCs) 

SID-LBP- 

Spe-SVM 

5 49.01 62.84 64.08 64.57 69.51 72.69 73.17 

 10 53.31 81.82 79.32 87.81 70.12 87.28 89.11 

15 55.37 81.47 86.49 90.29 71.41 88.96 89.58 

20 60.19 82.69 89.18 94.07 70.44 88.75 90.96 

25 58.84 84.98 88.15 93.34 71.92 93.21 93.49 

30 61.82 85.41 89.69 95.26 71.01 95.16 95.55 

35 64.25 87.69 94.52 96.09 72.82 93.91 94.12 

40 60.62 87.22 93.77   b96.87 71.21 95.12 95.21 

45 56.35 87.77 94.32 96.89 71.91 95.99 96.65 

50 63.15 95.38 96.45 97.22 72.47 95.46 95.47 

55 66.99 93.11 95.07 98.18 72.93 96.92 96.99 

60 63.91 95.85 95.84 97.68 74.08 95.72 95.72 

65 68.40 94.08 95.12 95.18 73.28 95.48 95.37 

70 66.74 92.26 95.45 97.98 73.84 97.69 97.99 

75 68.04 94.20 97.06 97.16 74.21 97.76 98.01 

5. Conclusion and Future research Lines 

In this paper, we have developed a new texture feature extraction algorithm exploits spatial 

texture feature from spectrum. The method is proposed by employing local binary patterns (LBPs) 

to extract the image texture with respect to spectrum information diversity (SID) to measure the 

differences of spectrum information. Compared with the traditional LBP with the same classifier, 

which we choose here is SVM, we have got some results from the experiments above. First and 



 

 

foremost, The performances with SID_LBP are much better than with the original spectral 

signatures only, which demonstrates that the LBP is a highly discriminative spatial operator; 

Second, spectral-spatial joint feature is doing well than spectrum only and spatial feature only, 

which means spatial information is also important for spectral image classification; Third, 

SID_LBP is more effective than traditional LBP (1PCs) and time-saving than traditional LBP 

(3PCs) while the performance between them is almost the same; Finally, SID_LBP method gets 

less and less effeteness with the samples number increases, because that the more samples 

provides more spatial information than spectrum aspect. 

Although the results obtained are very encouraging, further experiments with additional 

scenes and comparison methods should be conducted. We also need to choose some other 

classifiers for experiments. 
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