Skip to main content
Log in

Graph regularized supervised cross-view hashing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Hashing methods have received significant attention for effective and efficient large scale similarity search in computer vision and information retrieval community. However, most existing cross-view hashing methods mainly focus on either similarity preservation of data or cross-view correlation. In this paper, we propose a graph regularized supervised cross-view hashing (GSCH) to preserve both the semantic correlation and the intra-view and inter view similarity simultaneously. In particular, GSCH uses intra-view similarity to estimate inter-view similarity structure. We further propose a sequential learning approach to derive the hashing function for each view. Experimental results on benchmark datasets against state-of-the-art methods show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  2. Bronstein MM, Bronstein AM, Michel F, Paragios N (2010) Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: CVPR, vol 1. San Francisco, p 5

  3. Chen N, Zhu J, Sun F, Xing EP (2012) Large-margin predictive latent subspace learning for multiview data analysis. IEEE Trans Pattern Anal Mach Intell 34(12):2365–2378

    Article  Google Scholar 

  4. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002

    Article  Google Scholar 

  5. De Sa VR, Gallagher PW, Lewis JM, Malave VL (2010) Multi-view kernel construction. Mach Learn 79(1-2):47–71

    Article  MathSciNet  Google Scholar 

  6. Ding G, Guo Y, Zhou J (2014) Collective matrix factorization hashing for multimodal data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2075–2082

  7. Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: VLDB, vol 99, pp 518–529

  8. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. In: IEEE Conference on computer vision and pattern recognition (CVPR), 2011. IEEE, pp 817–824

  9. Hwang SJ, Grauman K (2012) Reading between the lines: object localization using implicit cues from image tags. IEEE Trans Pattern Anal Mach Intell 34(6):1145–1158

    Article  Google Scholar 

  10. Kang WC, Li WJ, Zhou ZH (2016) Column sampling based discrete supervised hashing. In: AAAI, pp 1230–1236

  11. Kulis B, Jain P, Grauman K (2009) Fast similarity search for learned metrics. IEEE Trans Pattern Anal Mach Intell 31(12):2143–2157

    Article  Google Scholar 

  12. Kumar S, Udupa R (2011) Learning hash functions for cross-view similarity search. In: IJCAI Proceedings-international joint conference on artificial intelligence, vol 22, p 1360

  13. Lin Z, Ding G, Hu M, Wang J (2015) Semantics-preserving hashing for cross-view retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3864–3872

  14. Liu W, Wang J, Kumar S, Chang SF (2011) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 1–8

  15. Liu W, Wang J, Ji R, Jiang YG, Chang SF (2012) Supervised hashing with kernels. In: IEEE Conference on computer vision and pattern recognition (CVPR), 2012. IEEE, pp 2074–2081

  16. Liu W, Mu C, Kumar S, Chang SF (2014) Discrete graph hashing. In: Advances in neural information processing systems, pp 3419–3427

  17. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: IJCAI, vol 2015, pp 1617–1623

  18. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  19. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: AAAI, vol 2016, pp 201–207

  20. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: IJCAI, vol 16, pp 2576–2582

  21. Liu H, Ji R, Wu Y, Liu W, Hua G (2016) Supervised matrix factorization for cross-modality hashing. arXiv preprint arXiv:1603.05572

  22. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In: AAAI, vol 30, pp 1266–1272

  23. Liu L, Lin Z, Shao L, Shen F, Ding G, Han J (2017) Sequential discrete hashing for scalable cross-modality similarity retrieval. IEEE Trans Image Process 26(1):107–118. https://doi.org/10.1109/TIP.2016.2619262

    Article  MathSciNet  Google Scholar 

  24. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  MathSciNet  Google Scholar 

  25. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76(8):10,701–10,719

    Article  Google Scholar 

  26. Peng Y, Lu BL (2017) Discriminative extreme learning machine with supervised sparsity preserving for image classification. Neurocomputing 261:242–252. https://doi.org/10.1016/j.neucom.2016.05.113, http://www.sciencedirect.com/science/article/pii/S0925231217301972 Advances in Extreme Learning Machines (ELM 2015)

    Article  Google Scholar 

  27. Rasiwasia N, Costa Pereira J, Coviello E, Doyle G, Lanckriet GR, Levy R, Vasconcelos N (2010) A new approach to cross-modal multimedia retrieval. In: Proceedings of the 18th ACM international conference on multimedia. ACM, pp 251–260

  28. Rastegari M, Choi J, Fakhraei S, Daumé H III, Davis LS (2013) Predictable dual-view hashing. In: ICML (3), pp 1328–1336

  29. Sharma A, Kumar A, Daume H, Jacobs DW (2012) Generalized multiview analysis: a discriminative latent space. In: IEEE Conference on computer vision and pattern recognition (CVPR), 2012. IEEE, pp 2160–2167

  30. Shen F, Shen C, Liu W, Tao Shen H (2015) Supervised discrete hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 37–45

  31. Shen X, Sun QS, Yuan YH (2016) Semi-paired hashing for cross-view retrieval. Neurocomputing 213:14–23 . https://doi.org/10.1016/j.neucom.2016.01.121, http://www.sciencedirect.com/science/article/pii/S092523121630724X. Binary Representation Learning in Computer Vision

    Article  Google Scholar 

  32. Song J, Yang Y, Yang Y, Huang Z, Shen HT (2013) Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data. ACM, pp 785–796

  33. Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell 30(11):1958–1970

    Article  Google Scholar 

  34. Torralba A, Fergus R, Weiss Y (2008) Small codes and large image databases for recognition. In: Computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  35. Wang J, Kumar S, Chang SF (2010) Sequential projection learning for hashing with compact codes. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 1127–1134

  36. Wang J, Kumar S, Chang SF (2012) Semi-supervised hashing for large-scale search. IEEE Trans Pattern Anal Mach Intell 34(12):2393–2406

    Article  Google Scholar 

  37. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing systems, pp 1753–1760

  38. Wu C, Zhu J, Cai D, Chen C, Bu J (2013) Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Trans Knowl Data Eng 25(6):1380–1393. https://doi.org/10.1109/TKDE.2012.76

    Article  Google Scholar 

  39. Xu H, Wang J, Li Z, Zeng G, Li S, Yu N (2011) Complementary hashing for approximate nearest neighbor search. In: 2011 International conference on computer vision. IEEE, pp 1631–1638

  40. Xu X, He L, Shimada A, Taniguchi RI, Lu H (2016) Learning unified binary codes for cross-modal retrieval via latent semantic hashing. Neurocomputing 213:191–203

    Article  Google Scholar 

  41. Zhang D, Li WJ (2014) Large-scale supervised multimodal hashing with semantic correlation maximization. In: AAAI, vol 1, p 7

  42. Zhou J, Ding G, Guo Y (2014) Latent semantic sparse hashing for cross-modal similarity search. In: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. ACM, pp 415–424

  43. Zhu X, Huang Z, Shen HT, Zhao X (2013) Linear cross-modal hashing for efficient multimedia search. In: Proceedings of the 21st ACM international conference on multimedia. ACM, pp 143–152

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grants No. 61602248), the Fundamental Research Funds for the Central Universities (Grants No.KYZ201549) and the Natural Science Foundation of Jiangsu Province(Grants No. BK20160741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Jiang, H. & Xu, H. Graph regularized supervised cross-view hashing. Multimed Tools Appl 77, 28207–28224 (2018). https://doi.org/10.1007/s11042-018-5988-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5988-3

Keywords

Navigation