Skip to main content
Log in

Aesthetic art simulation for embroidery style

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Different image styles play a significant role in the human vision. Image rendering methods with non-photorealistic rendering based can simulate different illustrations and increase its aesthetic appeal. Despite many kinds of methods have been put forward to obtain various styles, technical subtleties and stylistic potential of the embroidery simulation are litter attention. This paper offers a detailed review of the embroidery art style simulating approach from a 2D photograph, and performs an evaluation features for these tasks. The primary novelty of this method is that the stitch features are generated through an embroidery stroke model, and stitch stoke will be merged to source image. Therefore, it avoids irregular needling embroidery, and highlights the stereoscopic effect which is not revealed in other rendering methods. Firstly, we generate noise image through gray adaptive method to guide the embroidery lines produced. After that, an improved line integral convolution technique is presented to generate stitch strokes, and scattered noise is normalizing to a certain line based on Hough transform. Next, the paper focuses on the raised strokes, which are rendered and obtained through bulging process technique in this paper. Finally, we can exploit mergence strategy based on mapping method to produce embroidery art style. To demonstrate the performance of our proposed method, this paper compares its simulating results with the real embroidery work and measure of image MSSIM is also used to evaluate the simulation quality. In all cases, the experimental results show that the proposed method can achieve embroidery style stitch visual quality and rich the aesthetic expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. An XB, Pellacini F (2010) User-controllable color transfer. Comput Graph Forum 29(2):263–271

    Article  Google Scholar 

  2. Blinn JF (1988) Simulation of wrinkled surfaces. Comput Sci Press 12(3):286–292

    Google Scholar 

  3. Buyruk Y, Cagdas G (2017) A new modeling approach for relief and emboss. Signal Process Commun Appl Conf 25. doi:https://doi.org/10.1109/SIU.2017.7960661

  4. Cabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. Process ACM SIGGRAPH 263–270

  5. Chen SG, Sun ZX, Xiang JH, Zhang Y (2011) Research on the technology of computer aided irregular needling embroidery. Chin J Comput 34(3):526–537

    Article  Google Scholar 

  6. Elad M, Milanfar P (2017) Style transfer via texture synthesis. IEEE Trans Image Process 99:1–13

    MathSciNet  MATH  Google Scholar 

  7. Gao H, Tang D (2006) New generating method of crayon drawing style. Comput Eng Appl 47(32):177–179

    Google Scholar 

  8. Guay M, Gleicher M, Cani MP (2015) Space-time sketching of character animation. Trans Graph Proc ACM Siggraph 34(4):1–10

    Google Scholar 

  9. Han XW, Tan L, Wang K, Xie S (2011) Heritance and development of Jingzhou pyrograph. J Yangtze Univ 34(11):9–12

    Google Scholar 

  10. Irony R, Cohen-Or D, Lischinski D (2005) Colorization by example. Proceedings of the 16th Eurographics conference on rendering techniques, Aire-la-Ville: Eurographics Association Press, p 201–210

  11. Jeon JY, Okuma M (2008) An optimum embossment of rectangular section in panel to minimize noise power. J Vib Acoust Trans Asme 130(2):1–7

    Article  Google Scholar 

  12. Jing Z, Fan X, Sun Q (2015) Global shared-layer blending method for stacking sequence optimization design and blending of composite structures. Compos Part Eng 69(181–190

    Article  Google Scholar 

  13. Johnson J, Alahi A, Li FF (2016) Perceptual losses for real-time style transfer and super-resolution. European conference on computer vision 694–711. https://doi.org/10.1007/978-3-319-46475-6_43

  14. Kyprianidis JE, Collmosse J, Wang TH, Isenberq T (2013) State of the art: a taxonomy of artistic stylization techniques for images and video. IEEE Trans Vis Comput Graph 19(5):866–885

    Article  Google Scholar 

  15. Larussi E, Bommes D, Bouseau A (2015) Bendfields: regularized curvature fields from rough concept sketches. ACM Trans Graph 34(3):1–16

    Google Scholar 

  16. Lindemeier T, Metzner J, Pollak L, Deussen O (2015) Hardware-based non-photorealistic rendering using a painting robot. Comput Graph Forum 34(2):311–323

    Article  Google Scholar 

  17. Liu WY, Tong X, Xu YQ et al (2001) Artistic image generation by deviation mapping. Int J Image Graph 1(4):565–574

    Article  Google Scholar 

  18. Liu X, Yao H, Chen X, Gao W (2006) Visual hull embossment by graph cuts. International conference on image processing p 2205–2208. https://doi.org/10.1109/ICIP.2006.312978

  19. Lu A, Ebert DS (2005) Example-based volume illustrations. Proceedings of the 16th IEEE visualization. IEEE Computer Society Press, Los Alamitos, pp 655–662

    Google Scholar 

  20. Lu CW, Xu L, Jiaya J (2012) Combining sketch and tone for pencil drawing production. International symposium on non-photorealistic animation and rendering (NPAR 2012) 65–73

  21. Luan FJ, Paris S, Shechtman E, Bala K (2017) Deep photo style transfer. Comput Vis Pattern Recogn arXiv:1703.07511v3

    Google Scholar 

  22. MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge university press, Cambridge

    MATH  Google Scholar 

  23. Phong BT (1975) Illumination for computer generated pictures. Proc Commun ACM (CACM) 18(6):311–317

    Article  Google Scholar 

  24. Qian WH, Xu D, Yue K et al (2013) Rendering pyrography style painting based on deviation mapping. J Image Graph 18(7):836–843

    Google Scholar 

  25. Reinhard E, Adhikhmin M, Gooch B et al (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41

    Article  Google Scholar 

  26. Richard OD, Peter EH (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM Artif Intell Center 15(1):11–15

    MATH  Google Scholar 

  27. Risser E, Wilmot P, Barner C (2017) Stable and controlled neural texture synthesis and style transfer using histogram losses arXiv:170108893

  28. Semmo A, Limberger D, Kyprianidis JE (2015) Image stylization by oil paint filtering using color palettes. Proceedings of the workshop on computational aesthetics. Aire-la-Ville: Eurographics Association Press, p 149–158

  29. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  30. Shigeyuki S, Ruprecht N, Tomomasa S, Yoshiaki S (2012) Illumination setup planning for a hand-eye system based on an environmental model. Adv Robot 6(4):461–482

    Google Scholar 

  31. Shuo S, Wei HD (2007) Efficient region based pencil drawing. Comput Eng Appl 43(14):34–37

    Google Scholar 

  32. Spicker M, Kratt J, Arellano D, Deussen O (2015) Depth-aware coherent line drawings. SIGGRAPH Asia 2015 technical briefs, New York: ACM Press, p 1(1-1):5

  33. Tian QM, Luo YP, Hu DC (2005) Shape decomposition algorithm in embroidery. J Comput-Aided Des Comput Graph 17(12):2625–2630

    Google Scholar 

  34. Tian QM, Luo YP, Hu DC (2006) Spiral path generation in embroidery CAD. J Comput-Aided Des Comput Graph 18(1):9–13

    Google Scholar 

  35. Tu CP, Yu JH, Chen HY (2009) Computer generation of water animation with the style of paper-cuts. J Comput-Aided Des Comput Graph 21(7):949–953

    Google Scholar 

  36. Wang XS, Li J, Xu D, Pu YY (2015) Interactive digital synthesis of Yunnan out-of-print woodcuts. J Image Graph 20(7):937–945

    Google Scholar 

  37. Welsh T, Adhikhmin M, Mueller K (2002) Transferring color to greyscale images. ACM Trans Graph 21(3):277–280

    Article  Google Scholar 

  38. Wu H, Xu D (2014) Image compositing using dominant patch transformations. Comput Graph 38(277–285

    Article  Google Scholar 

  39. Xiang JH, Yang KW, Zhou J, Shun ZX (2013) A novel image disintegration-based computerized embroidery method for random stitch. J Graph 34(4):16–23

    Google Scholar 

  40. Xu Z, Liu Y, Mei L, Hu C, Chen L (2015) Semantic based representing and organizing surveillance big data using video structural description technology. J Syst Softw 102:217–225

    Article  Google Scholar 

  41. Xydeas CS, Petrovic V (2000) Objective image fusion performance measure. Electron Lett 36(4):308–309

    Article  Google Scholar 

  42. Yang YB, Guo L, Chen SF et al (2003) Research on automatic character embroidery technology. J Comput Res Dev 40(1):88–93

    Google Scholar 

  43. Yang Y, Wang HM, Zhang J (2011) Generating half-dry stroke texture for cursive style calligraphy with Markov random field. Comput Eng Des 32(2):732–737

    Google Scholar 

  44. Ye J, Ding Y (2018) Controllable keyword search scheme supporting multiple users. Futur Gener Comput Syst 81(433–442):433–442

    Article  Google Scholar 

  45. Yu YT, Xu D (2015) Research on batik crack rendering algorithm. J Graph 36(2):159–164

    Google Scholar 

  46. Zhao MT, Zhu SC (2011) Customizing painterly rendering styles using stroke processes. Proceedings of the ACM SIGGRAPH/eurographics symposium on non-photorealistic animation and rendering. ACM Press, New York, pp 137–146

    Google Scholar 

  47. Zhou J, Sun ZX, Yang KW, Hu ZZ (2014) Parametric generation method for irregular needling embroidery rendering. J Comput-Aided Des Comput Graph 26(3):436–445

    Google Scholar 

Download references

Acknowledgements

This research was funded by the grants (No.61462093, 61662087, 61761046) from the Research Natural Science Foundation of China, the Research Foundation of Yunnan Province (No.2014FB113, 2014FA021), the Postdoctoral fund of the Ministry of education of China, Jiangsu Planned Projects for Postdoctoral Research Funds in 2017 (1108000197)..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Xu, D., Cao, J. et al. Aesthetic art simulation for embroidery style. Multimed Tools Appl 78, 995–1016 (2019). https://doi.org/10.1007/s11042-018-6002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6002-9

Keywords

Navigation