Skip to main content
Log in

On the ensemble of multiscale object-based classifiers for aerial images: a comparative study

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Remote sensing images (RSIs) are increasingly used as data source to produce maps used in several applications. Modern sensors launched into space from the end of the 1990s have been producing high spatial resolution RSIs. The use of classification methods based on regions, called as Geographic Object-Based Image Analysis (GEOBIA), has been demonstrated to be more appropriate to deal with this kind of image. However, finding the appropriate segmentation scale, which is not a trivial task, is crucial for the success of a GEOBIA method. In this paper, we perform a comparative study involving seven methods for RSI multiclass classification that combine different features extracted from different scales: M1-OvA, M2-OvO, M3-AdaMH, M4-Samme, M5-MV, M5-WMV, and M6-Cascade. The first four methods are boosting-based techniques and the last three are based on the majority vote approach. The effectiveness of the proposed methods was evaluated by analyzing the results of experiments conducted in three RSIs datasets. The methods were compared with the baseline SVM with Kernel RBF by measuring the overall accuracy, the Kappa Index, and the accuracy per class. The results show that all the proposed methods are effective for RSI classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogrammetry Remote Sens 65(1):2–16

    Article  Google Scholar 

  3. Bovolo F, Bruzzone L, Carlin L (2010) A novel technique for subpixel image classification based on support vector machine. IEEE Trans Image Process 19 (11):2983–2999. https://doi.org/10.1109/TIP.2010.2051632

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  5. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46. https://doi.org/10.1016/0034-4257(91)90048-b

    Article  Google Scholar 

  6. Cunningham P, Carney J (2000) Diversity versus quality in classification ensembles based on feature selection. In: Machine learning: ECML 2000. Springer, pp 109–116

  7. Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) Multiple classifier systems, first international workshop, MCS 2000, Cagliari, Italy, June 21-23, 2000, proceedings, lecture notes in computer science, vol 1857. Springer, pp 1–15. https://doi.org/10.1007/3-540-45014-9_1

  8. dos Santos JA, Penatti OAB, da S, Torres R (2010) Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification. In: Richard P, Braz J (eds) VISAPP 2010 - proceedings of the fifth international conference on computer vision theory and applications, Angers, France, May 17-21, vol 2. INSTICC Press, pp 203–208

  9. dos Santos JA, Gosselin PH, Philipp-Foliguet S, Torres RdS, Falcão AX (2012) Multiscale classification of remote sensing images. IEEE Trans Geosci Remote Sens 50(10):3764–3775. https://doi.org/10.1109/TGRS.2012.2186582

    Article  Google Scholar 

  10. dos Santos JA, Gosselin PH, Philipp-Foliguet S, Torres RdS, Falcão AX (2013) Interactive multiscale classification of high-resolution remote sensing images. IEEE J Select Topics Appl Earth Observ Remote Sens 6(4):2020–2034. http://www.scopus.com/inward/record.url?eid=2-s2.0-84881075584&partnerId=40&md5=c12ca32debbcbf85a24fb4d06985a8a2

    Article  Google Scholar 

  11. Du P, Xia J, Zhang W, Tan K, Liu Y, Liu S (2012) Multiple classifier system for remote sensing image classification: a review. Sensors 12(4):4764–4792

    Article  Google Scholar 

  12. Elmqvist B, Ardö J, Olsson L (2008) Land use studies in drylands: an evaluation of object-oriented classification of very high resolution panchromatic imagery. Int J Remote Sens 29(24):7129–7140

    Article  Google Scholar 

  13. Faria F, dos Santos J, Sarkar S, Rocha A, Da Torres R (2013) Classifier selection based on the correlation of diversity measures: when fewer is more. In: 2013 26th SIBGRAPI - conference on graphics, patterns and images (SIBGRAPI), pp 16–23

  14. Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classification purposes. Image Vis Comput 19(9):699–707

    Article  Google Scholar 

  15. Gianinetto M, Rusmini M, Candiani G, Dalla Via G, Frassy F, Maianti P, Marchesi A, Nodari FR, Dini L (2014) Hierarchical classification of complex landscape with vhr pan-sharpened satellite data and obia techniques. Eur J Remote Sens 47:229–250

    Article  Google Scholar 

  16. Hastie T, Rosset S, Zhu J, Zou H (2009) Multi-class AdaBoost. Statist Interface 2(3):349–360. https://doi.org/10.4310/sii.2009.v2.n3.a8

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification

  18. Huo LZ, Tang P, Zhang Z, Tuia D (2015) Semisupervised classification of remote sensing images with hierarchical spatial similarity. IEEE Geosci Remote Sens Lett 12(1):150–154

    Article  Google Scholar 

  19. Im J, Quackenbush LJ, Li M, Fang F (2014) Optimum scale in object-based image analysis. Scale Issues Remote Sens, 197–214

  20. Johnson BA (2013) High-resolution urban land-cover classification using a competitive multi-scale object-based approach. Remote Sensing Lett 4(2):131–140

    Article  Google Scholar 

  21. Karantzalos K, Argialas D, Paragios N (2007) Comparing morphological levelings constrained by different markers. In: Proceedings of the 8th international symposium on mathematical morphology, vol 1. Rio de Janeiro, Brazil, pp 113–124

  22. Kavzoglu T, Erdemir MY, Tonbul H (2017) Classification of semiurban landscapes from very high-resolution satellite images using a regionalized multiscale segmentation approach. J Appl Remote Sens 11(3):035,016

    Article  Google Scholar 

  23. Kégl B (2013) The return of adaboost.MH: multi-class Hamming trees. arXiv:1312.6086

  24. Kim M, Madden M, Xu B (2010) Geobia vegetation mapping in great smoky mountains national park with spectral and non-spectral ancillary information. Photogrammetric Eng Remote Sens 76(2):137–149

    Article  Google Scholar 

  25. Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, New Jersey

    Book  MATH  Google Scholar 

  26. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1)

  27. Li X, Shao G (2014) Object-based land-cover mapping with high resolution aerial photography at a county scale in Midwestern USA. Remote Sens 6(11):11,372–11,390

    Article  Google Scholar 

  28. Lin Y, He H, Tai HM, Chen F, Yin Z (2017) Rotation and scale invariant target detection in optical remote sensing images based on pose-consistency voting. Multimed Tools Appl 76(12):14,461–14,483

    Article  Google Scholar 

  29. Liu D, Xia F (2010) Assessing object-based classification: advantages and limitations. Remote Sens Lett 1(4):187–194

    Article  Google Scholar 

  30. Luo YM, Huang DT, Liu PZ, Feng HM (2016) An novel random forests and its application to the classification of mangroves remote sensing image. Multimed Tools Appl 75(16):9707–9722

    Article  Google Scholar 

  31. Nogueira K, Schwartz WR, dos Santos JA (2015) Coffee crop recognition using multi-scale convolutional neural networks. In: Iberoamerican congress on pattern recognition. Springer, pp 67–74

  32. Nogueira K, Dalla Mura M, Chanussot J, Schwartz WR, dos Santos JA (2016) Learning to semantically segment high-resolution remote sensing images. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE, pp 3566–3571

  33. Nogueira K, Penatti OA, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61:539–556

    Article  Google Scholar 

  34. Novack T, Esch T, Kux H, Stilla U (2011) Machine learning comparison between worldview-2 and quickbird-2-simulated imagery regarding object-based urban land cover classification. Remote Sens 3(10):2263–2282

    Article  Google Scholar 

  35. Paisitkriangkrai S, Shen C, Shi Q, van den Hengel A (2014) RandomBoost: simplified multi-class boosting through randomization. IEEE Trans Neural Netw Learn Syst 25(4):764–779. https://doi.org/10.1109/TNNLS.2013.2281214

    Article  Google Scholar 

  36. Pasolli E, Melgani F, Tuia D, Pacifici F, Emery WJ (2014) SVM active learning approach for image classification using spatial information. IEEE Trans Geosci Remote Sens 52(4):2217–2233. https://doi.org/10.1109/TGRS.2013.2258676

    Article  Google Scholar 

  37. Penatti OAB, Valle E, Torres RdS (2012) Comparative study of global color and texture descriptors for web image retrieval. J Vis Commun Image Represent 23 (2):359–380

    Article  Google Scholar 

  38. Polikar R (2006) Ensemble based systems in decision making. IEEE Circ Syst Mag 6(3):21–45

    Article  Google Scholar 

  39. Rocha A, Goldenstein S (2014) Multiclass from binary: expanding one-vs-all, one-vs-one and ecoc-based approaches. IEEE Trans Neural Netw Learn Syst 25(2):289–302. https://doi.org/10.1109/TNNLS.2013.2274735

    Article  Google Scholar 

  40. Schapire RE (1999) A brief introduction to boosting. In: International joint conference on artificial intelligence, pp 1401–1406

  41. Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37(3):297–336

    Article  MATH  Google Scholar 

  42. Suo A, Lin Y, Zhang M (2016) Regional difference of coastal land use around the bohai sea based on remote sensing images. Multimed Tools Appl 75(19):12,061–12,075

    Article  Google Scholar 

  43. Trias-Sanz R, Stamon G, Louchet J (2008) Using colour, texture, and hierarchial segmentation for high-resolution remote sensing. ISPRS J Photogrammetry Remote Sens 63(2):156–168

    Article  Google Scholar 

  44. Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ (2009) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47(7–2):2218–2232

    Article  Google Scholar 

  45. Tzotsos A, Argialas D (2008) Support vector machine classification for object-based image analysis. In: Blaschke T, Lang S, Hay G (eds) Object-based image analysis, lecture notes in geoinformation and cartography. Springer, Berlin, pp 663–677, https://doi.org/10.1007/978-3-540-77058-9_36

  46. Tzotsos A, Karantzalos K, Argialas D (2014) Multiscale segmentation and classification of remote sensing imagery with advanced edge and scale-space features. Scale Issues Remote Sens, 170–196

  47. Vargas JE, Saito P, Falcão A X, de Rezende PJ, dos Santos J (2014) Superpixel-based interactive classification of very high resolution images. In: 27th SIBGRAPI conference on graphics, patterns and images, pp 173–179

  48. Wang L, Dai Q, Chen Z (2010) A high spatial resolution remote sensed imagery classification algorithm using multiscale morphological profiles and svm. In: International conference on wireless communications networking and mobile computing (WiCOM), pp 1–4

  49. Xu Y, Lu Y (2015) Adaptive weighted fusion: a novel fusion approach for image classification. Neurocomputing 168:566–574. https://doi.org/10.1016/j.neucom.2015.05.070. http://www.sciencedirect.com/science/article/pii/S0925231215007687

    Article  Google Scholar 

  50. Zhang F, Du B, Zhang L (2016) Scene classification via a gradient boosting random convolutional network framework. IEEE Trans Geosci Remote Sens 54(3):1793–1802. https://doi.org/10.1109/TGRS.2015.2488681

    Article  Google Scholar 

  51. Zhang AZ, Sun GY, Liu SH, Wang ZJ, Wang P, Ma JS (2017) Multi-scale segmentation of very high resolution remote sensing image based on gravitational field and optimized region merging. Multimed Tools Appl, 1–18

Download references

Acknowledgements

This work was financed by CNPq (grants #312167/2015-6, and #307560/2016-3), FAPESP (grants #2014/12236-1, #2015/24494-8, #2016/50250-1, and #2017/20945-0), FAPESP-Microsoft Virtual Institute (grants #2014/50715-9, #2013/50155-0, and #2013/50169-1), CAPES (grant #88881.145912/2017-01), and FAPEMIG (APQ-00449-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo da Silva Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmael, A.A., dos Santos, J.A. & da Silva Torres, R. On the ensemble of multiscale object-based classifiers for aerial images: a comparative study. Multimed Tools Appl 77, 24565–24592 (2018). https://doi.org/10.1007/s11042-018-6023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6023-4

Keywords

Navigation