Skip to main content

Advertisement

Log in

The random boosting ensemble classifier for land-use image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a random boosting ensemble (RBE) classifier for remote sensing image classification, which introduces the random projection feature selection and bootstrap methods to obtain base classifiers for classifier ensemble. The RBE method is built based on an improved boosting framework, which is quite efficient for the few-shot problem due to the bootstrap in use. In RBE, kernel extreme machine (KELM) is applied to design base classifiers, which actually make RBE quite efficient due to feature reduction. The experimental results on the remote scene image classification demonstrate that RBE can effectively improve the classification performance, and resulting into a better generalization ability on the 21-class land-use dataset and the India pine satellite scene dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achlioptas D (2003) Database-friendly random projections: Johnson lindenstrauss with binary coins. Journal of Computer System Sciences 66(4):671–687

    Article  MathSciNet  Google Scholar 

  2. Aksoy S, Koperski K, Tusk C, Marchisio G, Tilton JC (2005) Learning Bayesian classifiers for scene classification with a visual grammar. IEEE Trans Geosci Remote Sens 43(3):581–589. https://doi.org/10.1109/TGRS.2004.839547

    Article  Google Scholar 

  3. Chen C, Zhou L, Guo J, Li W, Su H, Guo F (2015) Gabor-filtering-based completed local binary patterns for land-use scene classification. In: 2015 I.E. International Conference on Multimedia Big Data (big MM), 2015, pp. 324–329. doi:10.1109/BigMM.2015.23

  4. Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. Signal Image and Video Processing (SIViP) 10(issue.4):745–752. https://doi.org/10.1007/s11760-015-0804-2

    Article  Google Scholar 

  5. Crammer K (2002) Singer Y (2002) on the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2(2):265–292

    MATH  Google Scholar 

  6. Ding G, Chen W, Zhao S (2017) Real-time scalable visual tracking via quadrangle Kernelized correlation filters [J]. IEEE Trans Intell Transp Syst 19(1):140–150

    Article  Google Scholar 

  7. dos Santos JA, da Silva Torres R (2013) Remote sensing image segmentation and representation through multiscale analysis. In: 26Th conference on graphics, patterns and images tutorials (SIBGRAPI-T), pp. 23–30. doi:https://doi.org/10.1109/SIBGRAPI-T.2013.11

  8. dos Santos JA, Penatti OAB, da Silva Torres R (2010) Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification. In: VISAPP (2), pp. 203–208

  9. Dos Santos J.A., Penatti OAB, Da Silva Torres R, Gosselin PH, Philipp-Foliguet S, Falco A (2012) Improving texture description in remote sensing image multi-scale classification tasks by using visual words. In: 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3090– 3093s

  10. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, vol 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  11. Guo Y, Ding G, Han J, Gao Y (2017) Zero-shot learning with transferred samples. IEEE Trans Image Process 26(7):3277–3290

    Article  MathSciNet  Google Scholar 

  12. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  13. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification, in: IEEE Transactions on Systems, Man, and Cybernetics. part B(Cybernetics), vol. 42, 2, pp. 513–529

  14. Huang L, Chen C, Li W, Du Q (2016) Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors [J]. Remote Sens 8(6):483

    Article  Google Scholar 

  15. Huang L, Li W, Chen C, Zhang F, and Lang H (2017) Multiple Features Learning for Ship Classification in Optical Imagery, Multimedia Tools and Applications

  16. Lin Z, Ding G, Han J, Wang J (2017) Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Transactions on Cybernetics 47(12):4342–4355

    Article  Google Scholar 

  17. Lin Z, Ding G, Han J, Shao L (2017) End-to-End Feature-Aware label space encoding for multilabel classification with many classes. IEEE Transactions on Neural Networks & Learning system Vol. PP(Issue. 99):1–16

    Google Scholar 

  18. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4 http:// www.sciencedirect.com/science/article/pii/0031320395000674

    Article  Google Scholar 

  19. Shen C, Hao Z (2011) A direct formulation for totally-corrective multi-class boosting. Computer Vision & Pattern Recognition 32(14):2585–2592

    Google Scholar 

  20. Wang FL, Qi SH, Gao G, Zhao SC, Wang XY (2016) Logo information recognition in large-scale social media data. Multimedia Systems 22(issues: 1):63–73. https://doi.org/10.1007/s00530-014-0393-x

    Article  Google Scholar 

  21. Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006) Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sens 72(issue.7):799–811

    Article  Google Scholar 

  22. Zhang J, Cheng Z, Li T (2015) A bag-of-visual words approach based on optimal segmentation scale for high resolution remote sensing image classification. In: 2015 I.E. International geoscience and remote sensing symposium (IGARSS), pp.1012–1015. doi:10.1109/IGARSS.2015.7325940

  23. Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis 118(Issue 3):364–379

    Article  MathSciNet  Google Scholar 

  24. Zhang B, Yang Y, Chen C et al (2017) Action recognition using 3D histograms of texture and a multi-class boosting classifier. IEEE Transactions on Image Processing, 2017 26(10):4648–4660

    Article  MathSciNet  Google Scholar 

  25. Zhang B, Li Z, Perina A, Del Bue A, Murino V, Liu J (2017) Adaptive local movement modeling for robust object tracking. IEEE Transactions on Circuits and Systems for Video Technology 27(7):1515–1526

    Article  Google Scholar 

  26. Zhang B, Li Z, Cao X, Ye Q, Chen C, Shen L, Perina A, Ji R (2017) Output constraint transfer for Kernelized correlation filter in tracking. IEEE Transactions Systems, Man, and Cybernetics: Systems 47(4):693–703

    Article  Google Scholar 

  27. Zhang B, Gu J, Chen C et al. (2018) One-two-one networks for compression artifacts reduction in remote sensing. Isprs Journal of Photogrammetry & Remote Sensing

  28. Zhao Y, Zhang L, Li P, Huang B (2007) Classification of high spatial resolution imagery using improved gaussian markov random-field-based texture features. IEEE Trans Geosci Remote Sens 45(5):1458–1468. https://doi.org/10.1109/TGRS.2007.892602

    Article  Google Scholar 

  29. Zhao S, Liu T, Zhao S et al (2016) Event causality extraction based on connectives analysis [J]. Neurocomputing 173(P3):1943–1950

    Article  Google Scholar 

  30. Zhao S, Yao H, Gao Y, Ding G, Chua T-S (2016) Predicting personalized image emotion perceptions in social networks. IEEE Trans Affect Comput Vol. PP(Issue:99):1–14. https://doi.org/10.1109/TAFFC.2016.2628787

    Article  Google Scholar 

  31. Zhao S, Gao Y, Ding G, Chua T-S (2017) Real-time multimedia social event detection in microblog. IEEE Transactions on Cybernetics Vol. PP(Issue. 99):1–14

    Article  Google Scholar 

  32. Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IIEEE Transactions on Multimedia 19(3):632–645

    Article  Google Scholar 

  33. Zhao S, Ding G, Gao Y, Han J (2017),Approximating discrete probability distribution of image emotions by multi-modal features fusion, in: Twenty-sixth International Joint Conference on Artificial intelligence:4669–4675

Download references

Acknowledgements

Thanks for Linlin Yang for his help on the idea and source code, thanks for Prof. Jun Miao and Baochang Zhang for the help on the revision on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hainan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Miao, Y. The random boosting ensemble classifier for land-use image classification. Multimed Tools Appl 77, 29933–29947 (2018). https://doi.org/10.1007/s11042-018-6085-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6085-3

Keywords