Skip to main content
Log in

Efficient road specular reflection removal based on gradient properties

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Highlights caused by changes in sunlight throughout any given day cause failure in stereo matching, object recognition, and road segmentation. This is a serious challenge in advanced driver assistance systems (ADAS), because local high brightness and color discontinuities generally result in noticeable blurring of the road surface or object. This paper presents a novel strategy for removing specular reflection from highlight images by gradients distribution to optimize the diffuse image. The dark channel is introduced as a prior to initially estimate and locate the highlight. The threshold filter is then adopted to divide the high-intensity highlight and the weak highlight - the weak highlight affect neither the stereo matching nor road segmentation process. Finally, gradient properties (varying smoothness of specular and diffuse reflections) are presented to optimize the layer separation. Experimental results in speed and accuracy of road segmentation show that proposed method outperforms other techniques for separating highlights from road surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chung H-S (2008) Jiayajia efficient photometric stereo on glossy surfaces with wide specular lobes. In: Computer vision and pattern recognition, pp 1–8

  2. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A The PASCAL visual object classes challenge 2012 (VOC2012) Results. http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html

  3. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The kitti vision benchmark suite[C]. In: Computer vision and pattern recognition (CVPR), pp 3354–3361

  4. Kim H, Jin H, Hadap S et al (2013) Specular reflection separation using dark channel prior[C]. In: Computer Vision and Pattern Recognition (CVPR), pp 1460–1467

  5. Klinker GJ, Shafer SA, Kanade T (1988) The measurement of highlights in color images. Int J Comput Vis 2(1):7–32

    Article  Google Scholar 

  6. Klinker GJ, Shafer SA, Kanade T (1988) Image segmentation and reflection analysis through color[C]. In: Applications of artificial intelligence, pp 229–244

  7. Lee SW, Bajcsy R (1992) Detection of specularity using color and multiple views. In: Proceedings of the 2nd Eur. Conf. Comput. Vis., pp 99–114

  8. Levin A, Weiss Y (2007) User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans Pattern Anal Mach Intell 29(9):1647–1654

    Article  Google Scholar 

  9. Li Y, Brown MS (2014) Single image layer separation using relative smoothness[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2752–2759

  10. Lin S, Li Y, Kang SB et al (2002) Diffuse-specular separation and depth recovery from image sequences[C]. In: European conference on computer vision, pp 210–224

  11. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. CVPR 3:4

    Google Scholar 

  12. Mallick SP, Zickler T, Kriegman DJ, Belhumeur PN (2005) Beyond Lambert: reconstructing specular surfaces using color. Comput Vis Pattern Recognit 2:619–626

    Google Scholar 

  13. Nayar SK, Fang XS, Boult T (1997) Separation of reflection components using color and polarization. Int J Comput Vis 21(3):163–186

    Article  Google Scholar 

  14. Oliveira GL, Burgard W, Brox T (2016) Efficient deep models for monocular road segmentation[C]. In: Intelligent robots and systems (IROS), pp 4885–4891

  15. Park JS, Tou JT (1990) Highlight separation and surface orientation for 3-d specular objects. Pattern Recogn 1:331–335

    Google Scholar 

  16. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. Int J Comput Vis 47(1-3):7–42

    Article  Google Scholar 

  17. Shi J, Fu F, Wang Y et al (2016) Stereo matching with improved radiometric invariant matching cost and disparity refinement[C]. In: International conference on intelligent computing, pp 61–73

  18. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556

  19. Tan RT, Ikeuchi K (2005) Separating reflection components of textured surfaces using a single image[J]. Pattern Anal Mach Intell 27(2):178–193

    Article  Google Scholar 

  20. Tan RT, Ikeuchi K (2005) Reflection components decomposition of textured surfaces using linear basis functions[C]. In: Computer vision and pattern recognition, pp 125–131

  21. Tan P, Quan L, Lin S (2006) Separation of highlight reflection on textured surfaces. Comput Vis Pattern Recognit 2:1855–1860

    Google Scholar 

  22. Teichmann M, Weber M, Zoellner M et al (2016) MultiNet: real-time joint semantic reasoning for autonomous driving[J]. arXiv:1612.07695

  23. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Computer vision, pp 839–846

  24. Wang Y, Fu F, Shi J et al (2016) Efficient specular reflection separation based on dark channel prior on road Surface[C]. In: International conference on intelligent computing. Springer, Cham, pp 426–435

  25. Wolff LB, Boult TE (1991) Constraining object features using a polarization reflectance model[J]. IEEE Trans Pattern Anal Mach Intell 13(7):635–657

    Article  Google Scholar 

  26. Yan C, Zhang Y, Xu J et al (2014) Efficient parallel framework for HEVC motion estimation on many-core processors[J]. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  27. Yan C, Zhang Y, Xu J et al (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors[J]. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  28. Yan C, Xie H, Liu S et al (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification[J]. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  29. Yan C, Xie H, Yang D et al (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles[J]. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  30. Yang Q, Tan K-H, Ahuja N (2009) Real-time o(1) bilateral filtering. In: Computer vision and pattern recognition, pp 557–564

  31. Yang Q, Wang S, Ahuja N (2010) Real-time specular highlight removal using bilateral filtering[C]. In: European conference on computer vision. Springer. Berlin, pp 87–100

  32. Yang Q, Tang J, Ahuja N (2015) Efficient and robust specular highlight removal [J]. IEEE Trans Pattern Anal Mach Intell 37(6):1304–1311

    Article  Google Scholar 

  33. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (NSFC, No. 61504032)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fu, F., Lai, F. et al. Efficient road specular reflection removal based on gradient properties. Multimed Tools Appl 77, 30615–30631 (2018). https://doi.org/10.1007/s11042-018-6156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6156-5

Keywords