Abstract
Highlights caused by changes in sunlight throughout any given day cause failure in stereo matching, object recognition, and road segmentation. This is a serious challenge in advanced driver assistance systems (ADAS), because local high brightness and color discontinuities generally result in noticeable blurring of the road surface or object. This paper presents a novel strategy for removing specular reflection from highlight images by gradients distribution to optimize the diffuse image. The dark channel is introduced as a prior to initially estimate and locate the highlight. The threshold filter is then adopted to divide the high-intensity highlight and the weak highlight - the weak highlight affect neither the stereo matching nor road segmentation process. Finally, gradient properties (varying smoothness of specular and diffuse reflections) are presented to optimize the layer separation. Experimental results in speed and accuracy of road segmentation show that proposed method outperforms other techniques for separating highlights from road surfaces.






Similar content being viewed by others
References
Chung H-S (2008) Jiayajia efficient photometric stereo on glossy surfaces with wide specular lobes. In: Computer vision and pattern recognition, pp 1–8
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A The PASCAL visual object classes challenge 2012 (VOC2012) Results. http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The kitti vision benchmark suite[C]. In: Computer vision and pattern recognition (CVPR), pp 3354–3361
Kim H, Jin H, Hadap S et al (2013) Specular reflection separation using dark channel prior[C]. In: Computer Vision and Pattern Recognition (CVPR), pp 1460–1467
Klinker GJ, Shafer SA, Kanade T (1988) The measurement of highlights in color images. Int J Comput Vis 2(1):7–32
Klinker GJ, Shafer SA, Kanade T (1988) Image segmentation and reflection analysis through color[C]. In: Applications of artificial intelligence, pp 229–244
Lee SW, Bajcsy R (1992) Detection of specularity using color and multiple views. In: Proceedings of the 2nd Eur. Conf. Comput. Vis., pp 99–114
Levin A, Weiss Y (2007) User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans Pattern Anal Mach Intell 29(9):1647–1654
Li Y, Brown MS (2014) Single image layer separation using relative smoothness[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2752–2759
Lin S, Li Y, Kang SB et al (2002) Diffuse-specular separation and depth recovery from image sequences[C]. In: European conference on computer vision, pp 210–224
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. CVPR 3:4
Mallick SP, Zickler T, Kriegman DJ, Belhumeur PN (2005) Beyond Lambert: reconstructing specular surfaces using color. Comput Vis Pattern Recognit 2:619–626
Nayar SK, Fang XS, Boult T (1997) Separation of reflection components using color and polarization. Int J Comput Vis 21(3):163–186
Oliveira GL, Burgard W, Brox T (2016) Efficient deep models for monocular road segmentation[C]. In: Intelligent robots and systems (IROS), pp 4885–4891
Park JS, Tou JT (1990) Highlight separation and surface orientation for 3-d specular objects. Pattern Recogn 1:331–335
Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. Int J Comput Vis 47(1-3):7–42
Shi J, Fu F, Wang Y et al (2016) Stereo matching with improved radiometric invariant matching cost and disparity refinement[C]. In: International conference on intelligent computing, pp 61–73
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556
Tan RT, Ikeuchi K (2005) Separating reflection components of textured surfaces using a single image[J]. Pattern Anal Mach Intell 27(2):178–193
Tan RT, Ikeuchi K (2005) Reflection components decomposition of textured surfaces using linear basis functions[C]. In: Computer vision and pattern recognition, pp 125–131
Tan P, Quan L, Lin S (2006) Separation of highlight reflection on textured surfaces. Comput Vis Pattern Recognit 2:1855–1860
Teichmann M, Weber M, Zoellner M et al (2016) MultiNet: real-time joint semantic reasoning for autonomous driving[J]. arXiv:1612.07695
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Computer vision, pp 839–846
Wang Y, Fu F, Shi J et al (2016) Efficient specular reflection separation based on dark channel prior on road Surface[C]. In: International conference on intelligent computing. Springer, Cham, pp 426–435
Wolff LB, Boult TE (1991) Constraining object features using a polarization reflectance model[J]. IEEE Trans Pattern Anal Mach Intell 13(7):635–657
Yan C, Zhang Y, Xu J et al (2014) Efficient parallel framework for HEVC motion estimation on many-core processors[J]. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089
Yan C, Zhang Y, Xu J et al (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors[J]. IEEE Signal Process Lett 21(5):573–576
Yan C, Xie H, Liu S et al (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification[J]. IEEE Trans Intell Transp Syst 19(1):220–229
Yan C, Xie H, Yang D et al (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles[J]. IEEE Trans Intell Transp Syst 19(1):284–295
Yang Q, Tan K-H, Ahuja N (2009) Real-time o(1) bilateral filtering. In: Computer vision and pattern recognition, pp 557–564
Yang Q, Wang S, Ahuja N (2010) Real-time specular highlight removal using bilateral filtering[C]. In: European conference on computer vision. Springer. Berlin, pp 87–100
Yang Q, Tang J, Ahuja N (2015) Efficient and robust specular highlight removal [J]. IEEE Trans Pattern Anal Mach Intell 37(6):1304–1311
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833
Acknowledgments
This work was supported by a grant from the National Natural Science Foundation of China (NSFC, No. 61504032)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Y., Fu, F., Lai, F. et al. Efficient road specular reflection removal based on gradient properties. Multimed Tools Appl 77, 30615–30631 (2018). https://doi.org/10.1007/s11042-018-6156-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-6156-5