Skip to main content

Advertisement

Log in

Curvature determination in range images: new methods and comparison study

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A study of methods that determine surface curvature in real and synthetic range images is considered here. Four new determination methods are introduced (two convolution-based and two spline-based). These new methods, as well as a number of existing determination methods, are comparatively evaluated in terms of their (1) accuracy and (2) computational performance (i.e., run time). Their behavior in two common but challenging multimedia tasks (surface rendering and object discrimination based in whole or part on curvature determination) is also considered. Our evaluations also include an analysis of (1) which methods are most suitable for application in particular scenarios and (2) behavior of the methods with respect to parameter settings. One of the considered use cases includes application to consumer-grade Kinect sensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Al-Rousan R, Sunar MS, Kolivand H (2018) Geometry-based shading for shape depiction enhancement. Multimed Tools Appl 77(5):5737–5766. https://doi.org/10.1007/s11042-017-4486-3

    Article  Google Scholar 

  2. Alshawabkeh Y, Haala N, Fritsch D (2008) Range image segmentation using the numerical description of the mean curvature values. In: Proceedings of International archives photogrammetry, remote sensing and spatial Information Science 2008, p 533

  3. Assfalg J, Del Bimbo A, Pala P (2006) Content-based retrieval of 3d models through curvature maps: a cbr approach exploiting media conversion. Multimed Tools Appl 31(1):29–50. https://doi.org/10.1007/s11042-006-0034-2

    Article  Google Scholar 

  4. Bagchi P, Bhattacharjee D, Nasipuri M (2016) A robust analysis, detection and recognition of facial features in 2.5d images. Multimed Tools Appl 75(18):11,059–11,096

    Article  Google Scholar 

  5. Besl PJ, Jain RC (1986) Invariant surface characteristics for 3d object recognition in range images. Comput Vis Graph Image Process 33(1):33–80

    Article  Google Scholar 

  6. Bibiloni P, González-Hidalgo M, Massanet S (2016) A survey on curvilinear object segmentation in multiple applications. Pattern Recogn 60:949–970

    Article  Google Scholar 

  7. Boehm J, Brenner C (2000) Curvature-based range image classification for object recognition. In: Proceedings of SPIE, vol 4197, pp 211–220

  8. Candemir S, Borovikov E, Santosh K, Antani S, Thoma G (2015) Rsilc: Rotation- and scale-invariant, line-based color-aware descriptor. Image Vis Comput 42:1–12

    Article  Google Scholar 

  9. Cappelletto E, Zanuttigh P, Cortelazzo GM (2016) 3d scanning of cultural heritage with consumer depth cameras. Multimed Tools Appl 75(7):3631–3654

    Article  Google Scholar 

  10. Chen H, Bhanu B (2007) 3d free-form object recognition in range images using local surface patches. Pat Recog Lett 28(10):1252–1262

    Article  Google Scholar 

  11. Choi R, Cho CS (2016) An efficient approach for obtaining 3d surface curvature using blocked pattern projection. Multimed Tools Appl 75(23):15,679–15,691. https://doi.org/10.1007/s11042-015-2902-0

    Article  Google Scholar 

  12. Chua TS, Lim SK, Pung HK (1994) Content-based retrieval of segmented images. In: Proceedings of second ACM international conference on multimedia. ACM, New York, pp 211–218. https://doi.org/10.1145/192593.192658

  13. Cohen E, Riesenfeld RF, Elber G (2001) Geometric modeling with splines: an introduction. A K Peters, Natick

    Book  Google Scholar 

  14. Deriche R (1990) Fast algorithms for low-level vision. IEEE T-Pat Anal Mach Int 12(1):78–87. https://doi.org/10.1109/34.41386

    Article  Google Scholar 

  15. DGtal Contributors: DGtal: Digital geometry tools and algorithms library. http://dgtal.org. Accessed: 2017-1-20

  16. Du G, Yin C, Zhou M, Wu Z, Duan F (2017) Part-in-whole matching of rigid 3d shapes using geodesic disk spectrum. Multimedia Tools and Appl. https://doi.org/10.1007/s11042-017-5315-4

    Article  Google Scholar 

  17. Fan T, Medioni G, Nevatia R (1985) Description of surfaces from range data. In: Proceedings of DARPA image understanding work, pp 232–244

  18. Fan T, Medioni G, Nevatia R (1986) Description of surfaces from range data using curvature properties. In: Proceedings of IEEE computer Vision and Pat. Recog, pp. 86–91

  19. Fan T, Medioni G, Nevatia R (1987) Surface segmentation and description from curvature features. In: Proceedings of DARPA image understanding work, pp 351–359

  20. Flynn P, Jain A (1989) On reliable curvature estimation. In: Proceedings of IEEE comput. Vision and Pat. Recog, pp 110–116

  21. Ganguly S, Bhattacharjee D, Nasipuri M (2017) Fuzzy matching of edge and curvature based features from range images for 3d face recognition. Int Autom Soft Comput 23(1):51–62

    Article  Google Scholar 

  22. Hauenstein JD, Newman TS (2014) On reliable estimation of curvatures of implicit surfaces. In: Proceedings of 2nd international conference 3d vision (3DV), pp 697–704

  23. He C, Ran L, Wang L, Li X (2017) Point set surface compression based on shape pattern analysis. Multimed Tools Appl 76(20):20,545–20,565. https://doi.org/10.1007/s11042-016-3991-0

    Article  Google Scholar 

  24. Hoffman R, Jain AK (1987) Segmentation and classification of range images. IEEE T-Pat Anal Mach Int 9(5):608–620

    Article  Google Scholar 

  25. Jaekle E (2015) Paraboloid with formula. http://www.thingiverse.com/thing:934546. Accessed: 2016-9-1

  26. Kim S (2013) Extraction of ridge and valley lines from unorganized points. Multimed Tools Appl 63(1):265–279. https://doi.org/10.1007/s11042-012-0999-y

    Article  Google Scholar 

  27. Kindlmann G, Whitaker R, Tasdizen T, Moller T (2003) Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of Vis.’03, pp 513–520

  28. Kottari K, Delibasis K, Plagianakos V (2017) Real time vision-based measurements for quality control of industrial rods on a moving conveyor. Multimedia Tools and Appl Advance online publication. https://doi.org/10.1007/s11042-017-4891-7

    Article  Google Scholar 

  29. Krsek P, Lukács G., Martin RR (1998) Algorithms for computing curvatures from range data. In: In the mathematics of surfaces VIII, Information Geometers, pp 1–16

  30. Laboratory SUCG (1994) Stanford bunny . http://graphics.stanford.edu/data/3Dscanrep/. Accessed: 2017-11-5

  31. Lara López G, Peṅa Pérez Negrón A, De Antonio Jiménez A, Ramírez Rodríguez J, Imbert Paredes R (2017) Comparative analysis of shape descriptors for 3d objects. Multimed Tools Appl 76(5):6993–7040

    Article  Google Scholar 

  32. Lee J, Kim S, Kim SJ (2015) Mesh segmentation based on curvatures using the gpu. Multimed Tools Appl 74(10):3401–3412. https://doi.org/10.1007/s11042-014-2104-1

    Article  MathSciNet  Google Scholar 

  33. Lefloch D, Kluge M, Sarbolandi H, Weyrich T, Kolb A (2017) Comprehensive use of curvature for robust and accurate online surface reconstruction. IEEE T-Pat Anal Mach Int 39(12):2349–2365

    Article  Google Scholar 

  34. Li B, Godil A, Johan H (2014) Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3d model retrieval. Multimed Tools Appl 72(2):1531–1560. https://doi.org/10.1007/s11042-013-1464-2

    Article  Google Scholar 

  35. Magid E, Soldea O, Rivlin E (2007) A comparison of gaussian and mean curvature estimation methods on triangular meshes of range image data. Comp Vis Image Underst 107(3):139–159

    Article  Google Scholar 

  36. Marcolin F, Vezzetti E (2017) Novel descriptors for geometrical 3d face analysis. Multimed Tools and Appl 76(12):13,805–13,834

    Article  Google Scholar 

  37. Marschner S, Lobb R (1994) An evaluation of reconstruction filters for volume rendering. In: Proceedings of Vis. ’94, pp 100–107

  38. Martin RR (1998) Estimation of principal curvatures from range data. Int’l J. Shape Model 04(03n04):99–109

    Article  Google Scholar 

  39. Martins L, Silva M.A.G.d, Arruda M, Duarte J, Silva PM, Seixas RB, Gattass M (2014) Accelerating curvature estimate in 3d seismic data using gpgpu. In: Proceedings of IEEE Int. Symp. Comp. Architecture and high performance computer, pp 105–111

  40. Möller T, Mueller K, Kurzion Y, Machiraju R, Yagel R (1998) Design of accurate and smooth filters for function and derivative reconstruction. In: Proceedings of IEEE symp. Volume Vision, pp 143–151

  41. Mohanna F, Mokhtarian F (2003) An efficient active contour model through curvature scale space filtering. Multimed Tools Appl 21(3):225–242. https://doi.org/10.1023/A:1025718816384

    Article  Google Scholar 

  42. Monga O, Benayoun S, Faugeras OD (1992) From partial derivatives of 3-d density images to ridge lines. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp 354–359

  43. Paris S, Kornprobst P, Tumblin J, Durand F (2009) Bilateral filtering: Theory and applications. Found Trends Comput Graph Vis 4(1):1–73. https://doi.org/10.1561/0600000020

    Article  Google Scholar 

  44. Plouffe G, Cretu AM (2016) Static and dynamic hand gesture recognition in depth data using dynamic time warping. IEEE T-Instrum Measur 65(2):305–316

    Article  Google Scholar 

  45. Rusu R (2011) Principal curvatures estimation. http://www.pcl-users.org/Principal-curvatures-estimation-td2695839.html. Accessed: 2017-1-20

  46. Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In: Proceedings of IEEE Int’l Conf. on robotics and automation (ICRA)

  47. Soldea O, Elber G, Rivlin E (2006) Global segmentation and curvature analysis of volumetric data sets using trivariate b-spline functions. IEEE T-Pat Anal Mach Int 28(2):265–278

    Article  Google Scholar 

  48. Son H, Kim C, Kim C (2013) Fully automated as-built 3d pipeline segmentation based on curvature computation from laser-scanned data. In: Computing in civil engineering 2013, pp 765–772

  49. Soufi M, Arimura H, Nakamura K, Lestari FP, Haryanto F, Hirose TA, Umedu Y, Shioyama Y, Toyofuku F (2016) Feasibility of differential geometry-based features in detection of anatomical feature points on patient surfaces in range image-guided radiation therapy. Int’l J Comput Assist Radiol Surg 11(11):1993–2006

    Article  Google Scholar 

  50. Stein WA et al (2012) Sage mathematics software (ver. 5.4.1) the sage development team. http://www.sagemath.org

  51. Syarif MA, Ong TS, Teoh ABJ, Tee C (2017) Enhanced maximum curvature descriptors for finger vein verification. Multimed Tools Appl 76(5):6859–6887

    Article  Google Scholar 

  52. Tonchev K, Manolova A, Paliy I (2013) Comparative analysis of 3d face recognition algorithms using range image and curvature-based representations. In: Proceedings of 7th Int’l Conf. Int. Data acquisition and advanced comput. Systems (IDAACS), vol 01, pp 394–398

  53. Tong WS, Tang CK (2005) Robust estimation of adaptive tensors of curvature by tensor voting. IEEE T-Pat Anal Mach Int 27(3):434–449

    Article  Google Scholar 

  54. Wang C, Siddiqi K (2016) Differential geometry boosts convolutional neural networks for object detection. In: Proceedings of Diff. Geo. in Comp. Vision and machine learn. Work (CVPRW Proceedings), pp 1006–1013

  55. Wernersson E, Hendriks C, Brun A (2011) Accurate estimation of gaussian and mean curvature in volumetric images. In: Proceedings of International Conference of 3d imaging, Modeling, Proc., Vis. and Trans. (3DIMPVT) 2011, pp 312–317

  56. Worring M, Smeulders AWM (1992) The accuracy and precision of curvature estimation methods. In: Proceedings of 11th IAPR International Conference on Pattern Recognition, pp 139–142

  57. Yang P, Qian X (2007) Direct computing of surface curvatures for point-set surfaces. In: Proceedings of IEEE/eurographics Symposium on point-based graphics (SPBG) 2007, pp 29 – 36

  58. Zhang X, Li H, Cheng Z (2008) Curvature estimation of 3d point cloud surfaces through the fitting of normal section curvatures. In: Proceedings of ASIAGRAPH 2008, pp 72–79

Download references

Acknowledgments

We acknowledge comments of a review team that were used to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob D. Hauenstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauenstein, J.D., Newman, T.S. Curvature determination in range images: new methods and comparison study. Multimed Tools Appl 78, 9247–9273 (2019). https://doi.org/10.1007/s11042-018-6363-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6363-0

Keywords