Skip to main content

Advertisement

Log in

Segmentation of immunohistochemical image of lung neuroendocrine tumor based on double layer watershed

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Lung neuroendocrine tumor is a special kind of lung cancer. The level of tumor is a major factor in the diagnostic process of this kind of tumor, where Ki-67 proliferation is often used as the classification index. The segmentation and classification of Ki-67 immunohistochemical images of lung neuroendocrine tumors is the key to realize automatic calculation of Ki-67 proliferation index. In this paper, a new image segmentation algorithm based on double layer watershed is proposed, which is suitable for the characteristics of uneven color of the nucleus. For calculating the Ki-67 proliferation index, classification of negative and positive tumor cells by their color difference is accomplished. By means of the features of regional average gray level, area and circularity, the segmentation of nucleus which cannot be completely segmented is supplemented. The mean and standard deviation are used to evaluate the accuracy after segmentation, and they have major improvement through the new algorithm proposed in this paper. Detailed theoretical analysis and reasonable experimental results demonstrate the feasibility and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ao J, Mitra S, Long R, Nutter B, Antani S (2012) A hybrid watershed method for cell image segmentation. Proc IEEE Southwest Symp Imag Anal Interpret (SSIAI: 29–32. doi:10.1109/SSIAI.2012.6202445

  2. Caves R, Quegan S, White R (1998) Quantiative comparison of the performance of SAR segmentation algorithms. IEEE Trans Image Process 7(11):1534–1536

    Article  Google Scholar 

  3. Chen W et. al. (2016) Cancer statistics in China. CA: A Cancel J Clin. 66(2): 115–132. https://doi.org/10.3322/caac.21338

    Google Scholar 

  4. Chen S, Suzuki K, MacMahon H (2011) Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys 38(4):1844–1858. https://doi.org/10.1118/1.3561504

    Article  Google Scholar 

  5. Cherni MA, Sayadi M, Fnaiech F (2009) Using granulometry and watershed for breast tumor cells segmentation. Proc Int Conf Sign Circ Syst (SCS): 1–5. https://doi.org/10.1109/ICSCS.2009.5412539

  6. Devaki K, Bhaskaran VM, Suphalakshmi A (2014) FastWatersnakes: an improved image segmentation framework. Imag Sci J 62(6):303–312. https://doi.org/10.1179/1743131X13Y.0000000066

    Article  Google Scholar 

  7. Fan D, Wei L, Cao M (2016) Extraction of target region in lung immunohistochemical image based on artificial neural network. Multimed Tools Appl 75(19):12227–12244. https://doi.org/10.1007/s11042-016-3459-2

    Article  Google Scholar 

  8. Frucci M, Nappi M, Riccio D, Baja GS (2016) WIRE: watershed based iris recognition. Pattern Recogn 56:148–159. https://doi.org/10.1016/j.patcog.2015.08.017

    Article  Google Scholar 

  9. Hunter LA, Krafft S, Stingo F et al (2013) High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images. Med Phys 40(12):121916. https://doi.org/10.1118/1.4829514

    Article  Google Scholar 

  10. Lassen B, van Rikxoort EM, Schmidt M et al (2013) Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. IEEE Trans Med Imag 32(2):210–222. https://doi.org/10.1109/TMI.2012.2219881

    Article  Google Scholar 

  11. Liu BH, Wang WZ, Fang XD (2006) Automatic extraction of positive cells in tumor Immunohistochemical pathology image based on YCbCr. Proc World Congress Intell Contrl Auto (WCICA) 2:9708–9712. https://doi.org/10.1109/WCICA.2006.1713888

    Article  Google Scholar 

  12. Lu S, Wang S, Zhang Y (2017) A note on the marker-based watershed method for X-ray image segmentation. Comput Methods Prog Biomed 141:1–2. https://doi.org/10.1016/j.cmpb.2017.01.014

    Article  Google Scholar 

  13. Mouelhi A, Sayadi M, Fnaiech F, Mrad K, Romdhane KB (2013) Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method. Biomed Sign Process Contrl 8(5):421–436. https://doi.org/10.1016/j.bspc.2013.04.003

    Article  Google Scholar 

  14. Movsas B, Moughan J, Komaki R et al (2003) Radiotherapy patterns of care study in lung carcinoma. J Clin Oncol 21(24):4553–4559. https://doi.org/10.1200/JCO.2003.04.018

    Article  Google Scholar 

  15. Ng A, Nguyen T, Moseley JL et al (2010) Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels. Med Phys 37(3):1017–1028. https://doi.org/10.1118/1.3284368

    Article  Google Scholar 

  16. Nielsen PS, Bentzer NK, Jensen V et al (2014) Immunohistochemical Ki-67/KL1 double stains increase accuracy of Ki-67 indices in breast cancer and simplify automated image analysis.[J]. Appl Immunohistochem Molec Morphol Aimm 22(8):568–576

    Article  Google Scholar 

  17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  18. Qi X, Xing F, Foran DJ et al (2012) Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng 59(3):754–765. https://doi.org/10.1109/TBME.2011.2179298

    Article  Google Scholar 

  19. Rakovich TY, Mahfoud OK, Mohamed BM et al (2014) Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. ACS Nano 8(6):5682–5695

    Article  Google Scholar 

  20. Sa J, Sun X, Zhang T, Li H, Zeng H (2016) Improved Otsu segmentation based on sobel operator. 3rd Int Conf Syst Inform (ICSAI): 886–890. doi:https://doi.org/10.1109/ICSAI.2016.7811076

  21. Schuffler PJ, Schapiro D, Giesen C et al (2015) Automatic single cell segmentation on highly multiplexed tissue images. Cytometry, Part A 87(10):936–942. https://doi.org/10.1002/cyto.a.22702

    Article  Google Scholar 

  22. Shi Y, Gao Y, Wang R et al (2013) Transductive cost-sensitive lung cancer image classification. Appl Intell 38(1):16–28. https://doi.org/10.1007/s10489-012-0354-z

    Article  Google Scholar 

  23. Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40(4):043502–043502. https://doi.org/10.1118/1.4793409

    Article  Google Scholar 

  24. Vitulano S, Di Ruberto C, Nappi M (1997) Different methods to segment biomedical images. Pattern Recogn Lett 18(11–13):1125–1131. https://doi.org/10.1016/S0167-8655(97)00097-4

    Article  Google Scholar 

  25. Wei Q, Hu Y, MacGregor J (2008) Segmentation of lung lobes in clinical CT images. Int J Comput Assist Radiol Surg 3(1–2):151–163. https://doi.org/10.1007/s11548-008-0153-5

    Article  Google Scholar 

  26. Wu G, Lian J, Shen D (2012) Improving image-guided radiation therapy of lung cancer by reconstructing 4D-CT from a single free-breathing 3D-CT on the treatment day. Med Phys 39(12):7694–7709. https://doi.org/10.1118/1.4768226

    Article  Google Scholar 

  27. Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane mems actuators. IEEE 30th Int Conf Micro Electro Mech Syst (MEMS): 813–816. https://doi.org/10.1109/MEMSYS.2017.7863532

  28. Xie X, Zaitsev Y, Velásquez-García LF, Teller SJ, Livermore C (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014. https://doi.org/10.1088/0960-1317/24/12/125014

    Article  Google Scholar 

  29. Xing F, Su H, Neltner J et al (2014) Automatic Ki-67 counting using robust cell detection and online dictionary learning. IEEE Trans Biomed Eng 61(3):859–870. https://doi.org/10.1109/TBME.2013.2291703

    Article  Google Scholar 

  30. Xing F, Xie Y, Yang L (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 35(2):550–566. https://doi.org/10.1109/TMI.2015.2481436

    Article  Google Scholar 

  31. Xue Z, Wong K, Wong STC (2010) Joint registration and segmentation of serial lung CT images for image-guided lung cancer diagnosis and therapy. Comput Med Imaging Graph 34(1):55–60. https://doi.org/10.1016/j.compmedimag.2009.05.007

    Article  Google Scholar 

  32. Yang H, Ahuja N (2013) Automatic segmentation of granular objects in images: combining local density clustering and gradient-barrier watershed. Pattern Recogn 47(6):2266–2279. https://doi.org/10.1016/j.patcog.2013.11.004

    Article  Google Scholar 

  33. Zhang YD, Wu LN (2009) Segment-based coding of color images. Sci Chin Ser F: Inform Sci 52(6):914–925. https://doi.org/10.1007/s11432-009-0019-7

    Article  MATH  Google Scholar 

  34. Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J (2015) Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Inf Sci 322:115–132. https://doi.org/10.1016/j.ins.2015.06.017

    Article  MathSciNet  Google Scholar 

  35. Zhang L, Sonka M, Lu L, Summers RM, Yao J (2017) Combining fully convolutional networks and graph-based approach for automated segmentation of cervical cell nuclei. Proc 14th IEEE Int Symp Biomed Imag: 406–409. doi:https://doi.org/10.1109/ISBI.2017.7950548

  36. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13(4):716–724. https://doi.org/10.1109/42.363096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoyong Cao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Wang, S., Wei, L. et al. Segmentation of immunohistochemical image of lung neuroendocrine tumor based on double layer watershed. Multimed Tools Appl 78, 9193–9215 (2019). https://doi.org/10.1007/s11042-018-6431-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6431-5

Keywords

Navigation