Skip to main content

Abandoned or removed object detection from visual surveillance: a review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Intelligent Visual Surveillance is an important and challenging research field of image processing and computer vision. To prevent the ecological and economical losses from bomb blasting, an intelligent visual surveillance is required to keep an eye on public areas, infrastructures and discriminate an unattended object left among multiple objects at public places. An unattended object without its owner since a long time at public place is considered as an abandoned object. Identification of an abandoned object on real-time can prevent the terrorists attack through an automated video surveillance system. In recent decade, a good number of publications have been presented in the field of intelligent visual surveillance to identify the abandoned or removed objects. Furthermore, few surveys can be seen in the literature for the various human activity recognition but none of them focused deeply on abandoned or removed object detection in a review. In this paper, we present the state-of-the-art which demonstrates the overall progress of abandoned or removed object detection from the surveillance videos in the last decade. We include a brief introduction of the abandoned object detection with its issues and challenges. To acknowledge to the new researchers of this field, core technologies, and frequently used general steps to recognize abandoned or removed objects have been discussed in the literature such as foreground extraction, static object detection based on non-tracking or tracking approaches, feature extraction, classification and activity analysis to recognize abandoned object. The objective of this paper is to provide the literature review in the field of abandoned or removed object recognition from visual surveillance systems with its general framework to the researchers of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aggarwal JK, Ryoo MS (2011) Human activity analysis: a review. ACM Comput Surveys (CSUR) 43(3):16

    Article  Google Scholar 

  2. Arsic D, Hofmann M, Schuller B, Rigoll G (2007) Multi-camera person tracking and left luggage detection applying homographic transformation. In: Proceeding Tenth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS

  3. Auvinet E, Grossmann E, Rougier C, Dahmane M, Meunier J (2006) Left-luggage detection using homographies and simple heuristics. In: Proc. 9th IEEE International Workshop on Performance Evaluation in Tracking and Surveillance (PETS06), pp. 51Citeseer

  4. Bangare PS, Uke NJ, Bangare SL (2012) Implementation of abandoned object detection in real time environment. Int J Comput Appl 57(12)

  5. Beyan C, Yigit A, Temizel A (2011) Fusion of thermal-and visible-band video for abandoned object detection. J Electron Imaging 20(3):033,001–033,001

    Article  Google Scholar 

  6. Beynon MD, Van Hook DJ, Seibert M, Peacock A, Dudgeon D (2003) Detecting abandoned packages in a multi-camera video surveillance system. In: Advanced Video and Signal Based Surveillance, 2003. Proceedings. IEEE Conference on, 221–228. IEEE

  7. Bhargava M, Chen CC, Ryoo MS, Aggarwal JK (2009) Detection of object abandonment using temporal logic. Mach Vis Appl 20(5):271–281

    Article  Google Scholar 

  8. Bird N, Atev S, Caramelli N, Martin R, Masoud O, Papanikolopoulos N (2006) Real time, online detection of abandoned objects in public areas. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 3775-3780.IEEE

  9. Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11:31–66

    Article  MATH  Google Scholar 

  10. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  11. Calderara S, Vezzani R, Prati A, Cucchiara R (2005) Entry edge of field of view for multicamera tracking in distributed video surveillance. In: Advanced Video and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference on. 93–98. IEEE

  12. Candamo J, Shreve M, Goldgof DB, Sapper DB, Kasturi R (2010) Understanding transit scenes: a survey on human behavior-recognition algorithms. Intel Trans Syst, IEEE Trans 11(1):206–224

    Article  Google Scholar 

  13. Cheng S, Luo X, Bhandarkar SM (2007) A multiscale parametric background model for stationary foreground object detection. In: Motion and Video Computing, 2007. WMVC'07. IEEE Workshop on. 18–18. IEEE

  14. Chitra M, Geetha MK, Menaka L et al (2013) Occlusion and abandoned object detection for surveillance applications. Int J Comput Appl Technol Res 2(6):708 meta

    Google Scholar 

  15. Chuang CH, Hsieh JW, Tsai LW, Ju PS, Fan KC (2008) Suspicious object detection using fuzzy-color histogram. In: Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on. 3546–3549. IEEE

  16. Chuang CH, Hsieh JW, Tsai LW, Chen SY, Fan KC (2009) Carried object detection using ratio histogram and its application to suspicious event analysis. Circ Syst Video Technol, IEEE Trans 19(6):911–916

    Article  Google Scholar 

  17. Collazos A, Fernandez-Lopez D, Montemayor AS, Pantrigo JJ, Delgado ML (2013) Abandoned object detection on controlled scenes using kinect. In: Natural and Artificial Computation in Engineering and Medical Applications, pp. 169–178. Springer

  18. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  19. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts, and shadows in video streams. Patt Anal Mach Intel, IEEE Trans 25(10):1337–1342

    Article  Google Scholar 

  20. Denman S, Chandran V, Sridharan S (2008) Abandoned object detection using multi-layer motion detection. In: Proceedings of International Conference on Signal Processing and Communication Systems 2007, pp. 439-448. DSP for Communication Systems

  21. Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Computer VisionECCV 2000, pp. 751-767. Springer

  22. Ellingsen K (2008) Salient event-detection in video surveillance scenarios. In: Proceedings of the 1st ACM workshop on Analysis and retrieval of events/actions and workflows in video streams, pp. 57-64. ACM

  23. Evangelio RH, Sikora T (2010) Static object detection based on a dual background model and a finite-state machine. EURASIP J Image Video Proc 2011(1):858,502

    Google Scholar 

  24. Evangelio, R.H., Senst, T., Sikora, T. (2011) Detection of static objects for the task of video surveillance. In: Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pp. 534-540. IEEE

  25. Fan Q, Pankanti S (2011) Modeling of temporarily static objects for robust abandoned object detection in urban surveillance. In: Advanced Video and Signal-Based Surveillance (AVSS), 2011 8th IEEE International Conference on. 36–41. IEEE

  26. Fan Q, Pankanti S (2012) Robust foreground and abandonment analysis for large-scale abandoned object detection in complex surveillance videos. In: Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on, pp. 58-63. IEEE

  27. Fan, Q., Gabbur, P., Pankanti, S. (2013) Relative attributes for large-scale abandoned object detection. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp. 2736-2743. IEEE

  28. Femi PS, Thaiyalnayaki K (2013) Detection of abandoned and stolen objects in videos using mixture of gaussians. International Journal of Computer Applications 70(10)

  29. Fernandez-Caballero A, Castillo JC, Rodriguez-Sanchez JM (2012) Human activity monitoring by local and global finite state machines. Expert Syst Appl 39(8):6982–6993

    Article  Google Scholar 

  30. Ferrando S, Gera G, Regazzoni C (2006) Classication of unattended and stolen objects in video-surveillance system. In: Video and Signal Based Surveillance, 2006. AVSS'06. IEEE International Conference on, pp. 21-21. IEEE

  31. Ferryman J, Hogg D, Sochman J, Behera A, Rodriguez-Serrano JA, Worgan S, Li L, Leung V, Evans M, Cornic P et al (2013) Robust abandoned object detection integrating wide area visual surveillance and social context. Pattern Recogn Lett 34(7):789–798

    Article  Google Scholar 

  32. Foggia P, Greco A, Saggese A, Vento M (2015) A method for detecting long term left baggage based on heat map

  33. Foresti GL, Marcenaro L, Regazzoni CS (2002) Automatic detection and indexing of videoevent shots for surveillance applications. Multimed, IEEE Trans 4(4):459–471

    Article  Google Scholar 

  34. Foresti GL, Mahonen P, Regazzoni CS (2012) Multimedia video-based surveillance systems: Requirements, Issues and Solutions, vol. 573. Springer Science & Business Media

  35. Foucher S, Lalonde M, Gagnon L (2011) A system for airport surveillance: detection of people running, abandoned objects, and pointing gestures. In: SPIE Defense, Security, and Sensing, pp. 805,610-805,610. International Society for Optics and Photonics

  36. Gouaillier V, Fleurant A (2009) Intelligent video surveillance: Promises and challenges. Technological and commercial intelligence report, CRIM and Techn^opole Defence and Security 456-468

  37. Guler S, Farrow MK (2006) Abandoned object detection in crowded places. In: Proc. of PETS, pp. 18-23. Citeseer

  38. Guler S, Silverstein J, Pushee IH et al. (2007) Stationary objects in multiple object tracking. In: Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on, pp. 248-253. IEEE

  39. Haritaoglu I, Cutler R, Harwood D, Davis LS (1999) Backpack: Detection of people carrying objects using silhouettes. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 1, pp. 102-107. IEEE

  40. Haritaoglu I, Harwood D, Davis LS (2000) W 4: real-time surveillance of people and their activities. Patt Anal Mach Intel, IEEE Trans 22(8):809–830

    Article  Google Scholar 

  41. Hoferlin M, Hoferlin B, Weiskopf D, Heidemann G (2015) Uncertainty-aware video visual analytics of tracked moving objects. J Spatial Inform Sci 2:87–117

    Google Scholar 

  42. Hu, M.K. (1962) Visual pattern recognition by moment invariants. information Theory, IRE Transactions on 8(2), 179-187

  43. Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. Systems, Man, and Cybernetics, Part C: Appl Rev, IEEE Trans 34(3):334–352

    Article  Google Scholar 

  44. Image. URL https://www.boardofstudies.nsw.edu.au/bosstats/images/2011/2011-crowds-8-lg:jpg

  45. Image (Accessed on 01 June, 2016). URL https://www.123rf.com/stockphoto/exhibitioncrowd:html

  46. Isard M, Blake A (1998) Condensation conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  47. Jalal AS, Singh V (2012) The state-of-the-art in visual object tracking. Informatica 36(3)

  48. Javed O, Shah M (2002) Tracking and object classification for automated surveillance. In: Computer Vision ECCV 2002, pp. 343–357. Springer

  49. Joglekar UA, Awari SB, Deshmukh SB, Kadam DM, Awari RB (2014) An abandoned object detection system using background segmentation. In: International Journal of Engineering Research and Technology, vol. 3. ESRSA Publications

  50. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Fluids Eng 82(1):35–45

    MathSciNet  Google Scholar 

  51. Khan S, Shah M (2003) Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. Patt Anal Mach Intel, IEEE Trans 25(10):1355–1360

    Article  Google Scholar 

  52. Khan SM, Shah M (2006) A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Computer Vision ECCV 2006, pp. 133-146. Springer

  53. Kim J, Kim D (2014) Static region classication using hierarchical finite state machine. In: Image Processing (ICIP), 2014 IEEE International Conference on, pp. 2358{2362. IEEE

  54. Kitagawa G (1987) Non-gaussian statespace modeling of nonstationary time series. J Am Stat Assoc 82(400):1032–1041

    MATH  Google Scholar 

  55. Kong H, Audibert JY, Ponce J (2010) Detecting abandoned objects with a moving camera. Image Proc, IEEE Trans 19(8):2201–2210

    Article  MathSciNet  MATH  Google Scholar 

  56. Krahnstoever N, Tu P, Sebastian T, Perera A, Collins R (2006) Multi-view detection and tracking of travelers and luggage in mass transit environments. In: In Proc. Ninth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), vol. 258

  57. Lavee G, Khan L, Thuraisingham B (2005) A framework for a video analysis tool for suspicious event detection. 79–84

  58. Lavee G, Khan L, Thuraisingham B (2007) A framework for a video analysis tool for suspicious event detection. Multimed Tools Appl 35(1):109–123

    Article  Google Scholar 

  59. Li L, Luo R, Ma R, Huang W, Leman K (2006) Evaluation of an ivs system for abandoned object detection on pets 2006 datasets. In: Proceedings of the 9th IEEE International Workshop on Performance Evaluation in Tracking and Surveillance (PETS'06), pp. 91-Citeseer

  60. Li Q, Mao Y, Wang Z, Xiang W (2009) Robust real-time detection of abandoned and removed objects. In: Image and Graphics, 2009. ICIG'09. Fifth International Conference on, pp. 156-161. IEEE

  61. Li X, Zhang C, Zhang D (2010) Abandoned objects detection using double illumination invariant foreground masks. In: Pattern Recognition (ICPR), 2010 20th International Conference on, pp. 436-439. IEEE

  62. Liao HH, Chang JY, Chen LG (2008) A localized approach to abandoned luggage detection with foreground-mask sampling. In: Advanced Video and Signal Based Surveillance, 2008. AVSS'08. IEEE Fifth International Conference on, pp. 132-139. IEEE

  63. Lin K, Chen SC, Chen CS, Lin DT, Hung YP (2014) Left-luggage detection from finite state-machine analysis in static-camera videos. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 4600-4605. IEEE

  64. Lin K, Chen SC, Chen CS, Lin DT, Hung YP (2015) Abandoned object detection via temporal consistency modeling and back-tracing verification for visual surveillance. Info Forensics Sec, IEEE Trans 10(7):1359–1370

    Article  Google Scholar 

  65. Lo B, Velastin S (2001) Automatic congestion detection system for underground platforms. In: Intelligent Multimedia, Video and Speech Processing, 2001. Proceedings of 2001 International Symposium on, pp. 158-161. IEEE

  66. Lu S, Zhang J, Feng D (2006) A knowledge-based approach for detecting unattended packages in surveillance video. In: Video and Signal Based Surveillance, 2006. AVSS'06. IEEE International Conference on, pp. 110-110. IEEE

  67. Lu S, Zhang J, Feng D (2007) An efficient method for detecting ghost and left objects in surveillance video. In: Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on, pp. 540-545. IEEE

  68. Lu S, Zhang J, Feng DD (2007) Detecting unattended packages through human activity recognition and object association. Pattern Recogn 40(8):2173–2184

    Article  MATH  Google Scholar 

  69. Lv F, Song X, Wu B, Singh VK, Nevatia R (2006) Left luggage detection using Bayesian inference. In: Proc. of IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance, pp. 83-90. Citeseer

  70. Maddalena L, Petrosino A (2013) Stopped object detection by learning foreground model in videos. Neural Netwo Learn Syst, IEEE Trans 24(5):723–735

    Article  Google Scholar 

  71. Mahin FS, Islam MN, Schaefer G, Ahad MAR (2015) A simple approach for abandoned object detection. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), p. 427. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)

  72. Martinez-del Rincon J, Herrero-Jaraba JE, Gomez JR, Orrite-Urunuela C (2006) Automatic left luggage detection and tracking using multi-camera ukf. In: Proceedings of the 9th IEEE International Workshop on Performance Evaluation in Tracking and Surveillance (PETS'06), pp. 59-66

  73. Mathew R, Yu Z, Zhang J (2005) Detecting new stable objects in surveillance video. In: Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. IEEE

  74. McHugh JM, Konrad J, Saligrama V, Jodoin PM (2009) Foreground-adaptive background subtraction. Sign Proc Lett, IEEE 16(5):390–393

    Article  Google Scholar 

  75. Miguel JCS, Martinez JM (2008) Robust unattended and stolen object detection by fusing simple algorithms. In: Advanced Video and Signal Based Surveillance, 2008. AVSS'08. IEEE Fifth International Conference on, pp. 18-25. IEEE

  76. Mittal A, Davis L (2001) Unified multi-camera detection and tracking using region-matching. In: Multi-Object Tracking, 2001. Proceedings. 2001 IEEE Workshop on, pp. 3-10. IEEE

  77. Mukherjee D, Wu QJ, Nguyen TM (2014) Gaussian mixture model with advanced distance measure based on support weights and histogram of gradients for background suppression. IEEE Trans Ind Inform 10(2):1086–1096

    Article  Google Scholar 

  78. Nam Y (2015) Real-time abandoned and stolen object detection based on spatio-temporal features in crowded scenes. Multimedia Tools and Applications pp. 1-26

  79. Otoom AF, Gunes H, Piccardi M (2008) Feature extraction techniques for abandoned object classification in video surveillance. In: 2008 15th IEEE International Conference on Image Processing, pp. 1368-1371. IEEE

  80. Pan J, Fan Q, Pankanti S (2011) Robust abandoned object detection using region-level analysis. In: Image Processing (ICIP), 2011 18th IEEE International Conference on, pp. 3597-3600. IEEE

  81. Pavithradevi MK, Scholar P (2014) Detection of suspicious activities in public areas using staged matching technique. IJAICT 1

  82. Pets 2001 benchmark data, (2001). URL http://www.cvg.rdg.ac.uk/PETS2001/

  83. Pets 2007 benchmark data (2007). URL http://www.cvg.rdg.ac.uk/PETS2006/data.html

  84. Piccardi, M. (2004) Background subtraction techniques: a review. In: Systems, man and cybernetics, 2004 IEEE international conference on, vol. 4, pp. 3099-3104. IEEE

  85. Popoola OP, Wang K (2012) Video-based abnormal human behavior recognitiona review. Systems, Man, and Cybernetics, Part C: Appl Rev, IEEE Trans 42(6):865–878

    Article  Google Scholar 

  86. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990

    Article  Google Scholar 

  87. Porikli F (2007) Detection of temporarily static regions by processing video at different frame rates. In: Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conferenceon, pp. 236-241. IEEE

  88. Porikli, F., Yin, Z. (2007) Temporally static region detection in multi-camera systems. In: Proc. 10th IEEE Int. Workshop on Performance evaluation of tracking and surveillance: PETS, pp. 79-86

  89. Porikli, F., Ivanov, Y., Haga, T. (2008) Robust abandoned object detection using dual foregrounds. EURASIP Journal on Advances in Signal Processing 2008, 30

  90. Prabhakar G, Ramasubramanian B (2012) An efficient approach for real time tracking of intruder and abandoned object in video surveillance system. Int J Comput Appl 54(17):22–27

    Google Scholar 

  91. Regazzoni CS, Fabri G, Vernazza G (1998) Advanced video-based surveillance systems, vol. 488. Springer Science & Business Media

  92. Sacchi C, Regazzoni CS (2000) A distributed surveillance system for detection of abandoned objects in unmanned railway environments. Vehicular Technol, IEEE Trans 49(5):2013–2026

    Article  Google Scholar 

  93. Sajith, K., Nair, K.R. (2013) Abandoned or removed objects detection from surveillance video using codebook. In: International Journal of Engineering Research and Technology, vol. 2. ESRSA Publications

  94. SanMiguel JC, Martinez JM (2012) A semantic-based probabilistic approach for real-time video event recognition. Comput Vis Image Underst 116(9):937–952

    Article  Google Scholar 

  95. SanMiguel J, Caro L, Martinez J (2012) Pixel-based colour contrast for abandoned and stolen object discrimination in video surveillance. Electron Lett 48(2):86–87

    Article  Google Scholar 

  96. Singh VK, Atrey PK, Kankanhalli MS (2008) Coopetitive multi-camera surveillance using model predictive control. Mach Vis Appl 19(5-6):375–393

    Article  Google Scholar 

  97. Singh, R., Vishwakarma, S., Agrawal, A., Tiwari, M. (2010) Unusual activity detection for video surveillance. In: Proceedings of the First International Conference on Intelligent Interactive Technologies and Multimedia, pp. 297-305. ACM

  98. Smith KC, Quelhas P, Gatica-Perez D (2006) Detecting abandoned luggage items in a public space. Tech. rep., IDIAP

  99. Spengler M, Schiele B (2003) Automatic detection and tracking of abandoned objects. In: Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Citeseer

  100. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on, vol. 2. IEEE

  101. Stringa E, Regazzoni CS (1998) Content-based retrieval and real time detection from video sequences acquired by surveillance systems. In: Image Processing, 1998. ICIP98. Proceedings. 1998 International Conference on, pp. 138-142. IEEE

  102. Stringa E, Regazzoni CS (2000) Real-time video-shot detection for scene surveillance applications. Image Proc, IEEE Trans 9(1):69–79

    Article  Google Scholar 

  103. Szwoch G (2016) Extraction of stable foreground image regions for unattended luggage detection. Multimed Tools Appl 75(2):761–786

    Article  Google Scholar 

  104. Tejas Naren TN, Shankar Siddharth KA, Venkat Krishnan S, Sanjeevi LR (2014) Abandoned object detection for automated video surveillance using hadoop. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3(3). http://www.ijareeie.com/upload/2014/apr14-specialissue3/21_R22.pdf

  105. Tian Y, Feris RS, Liu H, Hampapur A, Sun MT (2011) Robust detection of abandoned and removed objects in complex surveillance videos. Systems, Man, and Cybernetics, Part C: Appl Rev, IEEE Trans 41(5):565–576

    Article  Google Scholar 

  106. Tian Y, Senior A, Lu M (2012) Robust and efficient foreground analysis in complex surveillance videos. Mach Vis Appl 23(5):967–983

    Article  Google Scholar 

  107. Tripathi RK, Jalal AS (2014) A framework for suspicious object detection from surveillance video. Int J Mach Intel Sensory Sign Proc 1(3):251–266

    Google Scholar 

  108. Tripathi RK, Jalal AS, Bhatnagar C (2013) A framework for abandoned object detection from video surveillance. In: Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2013 Fourth National Conference on, pp. 1-4. IEEE

  109. Tsai RY (1986) An efficient and accurate camera calibration technique for 3d machine vision. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1986

  110. Vezzani R, Cucchiara R (2010) Video surveillance online repository (visor): an integrated framework. Multimed Tools Appl 50(2):359–380

    Article  Google Scholar 

  111. Wan EA, Van Der Merwe R (2000) The unscented kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153-158. IEEE

  112. Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196

    Article  Google Scholar 

  113. Witten I, Frank E (2000) Data mining: Practical machine learning tools with java implementations. MODELO MATEMATICO PARAMETRICO DE ESTIMACION PARA PROYECTOS DE DATA MINING IDMCOMOf

  114. Wren CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: real-time tracking of the human body. Patt Anal Mach Intel, IEEE Trans 19(7):780–785

    Article  Google Scholar 

  115. Yadav P, Jahagirdar A (2015) A static object detection in image sequences by self organizing background subtraction

  116. Yang Z, Rothkrantz L (2011) Surveillance system using abandoned object detection. In: Proceedings of the 12th International Conference on Computer Systems and Technologies, pp. 380-386. ACM

  117. Yang T, Pan Q, Li SZ, Li J (2004) Multiple layer based background maintenance in complex environment. In: Image and Graphics (ICIG'04), Third International Conference on, pp. 112-115. IEEE

  118. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. A Comput Surveys (CSUR) 38(4):13

    Article  Google Scholar 

  119. Yue, Z., Zhou, S.K., Chellappa, R. (2004) Robust two-camera tracking using homography. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP'04). IEEE International Conference on, vol. 3, pp. iii −1. IEEE

  120. Zeng Y, Lan J, Ran B, Gao J, Zou J (2015) A novel abandoned object detection system based on three-dimensional image information. Sensors 15(3):6885–6904

    Article  Google Scholar 

  121. Zhou Y, Benois-Pineau J, Nicolas H (2010) Multi-object particle filter tracking with automatic event analysis. In: Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams, pp. 21-26. ACM

  122. Ziaeefard M, Bergevin R (2015) Semantic human activity recognition: a literature review. Pattern Recogn 8(48):2329–2345

    Article  Google Scholar 

  123. Zin TT, Tin P, Toriu T, Hama H (2012) A novel probabilistic video analysis for stationary object detection in video surveillance systems. IAENG Int J Comput Sci 39(3):295–306

    Google Scholar 

  124. Zin TT, Tin P, Toriu T, Hama H (2012) A probability-based model for detecting abandoned objects in video surveillance systems. In: Proceedings of the World Congress on Engineering, 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Tripathi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R.K., Jalal, A.S. & Agrawal, S.C. Abandoned or removed object detection from visual surveillance: a review. Multimed Tools Appl 78, 7585–7620 (2019). https://doi.org/10.1007/s11042-018-6472-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6472-9

Keywords