Skip to main content
Log in

BIIIA: a bioinformatics-inspired image identification approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image identification by using similar patterns is a fundamental research problem in digital image analysis. In this paper, image identification of watermarks through biological sequence representation is described. The proposed method is termed bioinformatics-inspired image identification approach (BIIIA), where DNA-encoded images are aligned by using Smith-Waterman algorithm (SWA) and Needleman-Wunch algorithm (NWA) to derive patterns (signatures) which are exploited in pattern matching to identify images having the presence of a watermark. The results demonstrate the efficacy of this approach and evidence that DNA encoding is feasible for image watermark identification using SWA and NWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbas NA (2014) Image watermark detection techniques using quadtrees. Appl Comput Inform 11:102–115

    Article  Google Scholar 

  2. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024

    Article  Google Scholar 

  3. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  4. Bicego M, Lovato P (2012) 2D shape recognition using biological sequence alignment tools. Tsukuba

  5. Bicego M, Lovato P (2016) A bioinformatics approach to 2D shape classification. Comput Vis Image Underst 145:59–69

    Article  Google Scholar 

  6. Bicego M, Danese S, Melzi S, Castellani U (2015) A bioinformatics approach to 3D shape matching. Zurich, Switzerland

  7. Bornholt J et al. (2016) A DNA-based archival storage system. Atlanta, Georgia, USA

  8. Brassil J, Low S, Maxemchuk NF, O’Gorman L (1994) Electronic marking and identification techniques to discourage document copying. Infocom

  9. Caronni G (1995) Assuring Ownership Rights for Digital Images. In: Verläßliche IT-Systeme. DUD-Fachbeiträge. s.l.:Vieweg+Teubner Verlag, Wiesbaden, pp. 251-263

  10. Chen NDSY-J et al (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755–762

    Article  Google Scholar 

  11. Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337(6102):1628

    Article  Google Scholar 

  12. ClamavNet (2016) ClamAV® is an open source antivirus engine for detecting trojans, viruses, malware & other malicious threats. [Online] Available at: https://www.clamav.net/

  13. Clelland CT, Risca V, Bancroft C (1999) Hiding messages in DNA microdots. Nature 399(6736):533–534

    Article  Google Scholar 

  14. Cox JP (2001) Long-term data storage in DNA. Trends Biotechnol 19(7):247–250

    Article  Google Scholar 

  15. Cox I, Miller M (2002) The first 50 years of electronic watermarking. EURASIP J Adv Sign Process 2:1–7

    MATH  Google Scholar 

  16. Davis J (1996) Microvenus. Art J 55(1):70–74

    Article  Google Scholar 

  17. Drozda P, Górecki P, Sopyła K, Artiemjew P (2013) Visual Words Sequence Alignment for Image Classification. New York, NY, s.n

  18. Drozda P, Sopyła K, Górecki P (2014) Different orderings and visual sequence alignment algorithms for image classification. Zakopane, Poland

    Book  Google Scholar 

  19. Garhwal AS (2018) Bioinformatics-Inspired Analysis for Watermarked Images with Multiple Print and Scan. New Zealand: PhD Thesis, Auckland University of Technology

  20. Garhwal AS, Yan WQ, Narayanan A (2017) Image phylogeny for simulating multiple print-scan. IVCNZ17, Christchurch New Zealand

    Book  Google Scholar 

  21. Gibson DG et al (2010) Creation of bacterial cell controlled by a Cemically Sntheised genomes. Science 329(5987):13–22

    Article  Google Scholar 

  22. Goldman N et al (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494(7435):77–80

    Article  Google Scholar 

  23. Gonzalez W (2008) IEEE, NASA and NOAA, "DIP3/e—book images downloads 2008. [online]. Available: , S.L.: imageprocessingplace

  24. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162:705–708

    Article  Google Scholar 

  25. Grass RN et al (2015) Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew Chem Int Ed 54(8):2552–2555

    Article  Google Scholar 

  26. Homola T, Dohnal V, Zezula P (2011) Searching for sub-images using sequence alignment. Dana Point CA

  27. Kiah HM, Puleo GJ, Milenkovic O (2015) Codes for DNA Storage Channels. Jerusalem

  28. Kim Y-W, Oh I-S (2004) Watermarking text document images using edge directionm histograms. Pattern Recogn Lett: 1243–1251

  29. Kim H-S, Chang H-W, Liu H, Ja L, Lee D (2009) BIM: image matching using biological gene sequence alignment. Cairo

  30. Kim H-S, Chang H-W, Lee J, Lee D (2010) BASIL: effective near-duplicate image detection using gene sequence alignment. Milton Keynes, UK

  31. Lee S-H (2014) DWT based coding DNA watermarking for DNA copyright protection. Inf Sci 273:263–286

    Article  Google Scholar 

  32. Lee S-H, Hwang W-J, Lee E-J, Kwon K-R (2014) Coding DNA sequence watermarking. Frontier and Innovation in Future Computing and Communications, Springer: 21–27

  33. Lee S-H, Lee E-J, Hwang W-J, Kwon K-R (n.d.) A watermarking scheme for coding DNA sequences using codon circular code. Lugano, Switzerland

  34. Leier A, Richter C, Banzhaf W, Rauhe H (2000) Cryptography with DNA binary strands. Biosystems 57(1):13–22

    Article  Google Scholar 

  35. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11(5):473–483

    Article  Google Scholar 

  36. Limbachiya, D., Dhameliya, V., Khakhar, M. & Gupta, M. K., (2015) On optimal family of codes for archival DNA storage. Bengaluru

    Book  Google Scholar 

  37. Lobo I (2008) Basic local alignment search tool (BLAST). Nat Educ 1(1):215

    Google Scholar 

  38. Lovato P, Bicego M (2012) 2D shapes classification using BLAST. Hiroshima, Japan

  39. Lovato P et al (2014) S-BLOSUM: classification of 2D shapes with biological sequence alignment. In: Stockholm

    Google Scholar 

  40. Matsui, K. & Tanaka, K., (1994) Video-steganography. IMA Intellectual Property Project

    Google Scholar 

  41. Naidu, V. & Narayanan, A., (2014) Further Experiments in Biocomputational Structural Analysis of Malware

  42. Naidu V, Narayanan A (2016a) A syntactic approach for detecting viral polymorphic malware variants. Auckland, New Zealand

    Book  Google Scholar 

  43. Naidu V, Narayanan A (2016b) Needleman-Wunsch and smith-waterman algorithms for identifying viral polymorphic malware variants. Auckland, New Zealand

  44. Needleman S, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  Google Scholar 

  45. Panah AS, Schyndel RV, Sellis T, Bertino E (2016) On the properties of non-media digital watermarking: a review of state of the art techniques. IEEE Acess 4:2670–2704

    Article  Google Scholar 

  46. Pavel G (2005) Embedding, extraction and detection of digital watermark in spectral images. Lappeenranta, Finland

  47. Praun E, Hoppey H, Finkelstein A 1999. Robust mesh watermarking. Los Angeles, CA, USA

  48. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475(7356):368–372

    Article  Google Scholar 

  49. Rajawat KS, Chaudhary D, Kumar DA (2014) Watermarking text and image with encryption. Int J Sci Eng Res 5(5):170–176

    Google Scholar 

  50. Roberto V, Hofer M (2009) Theia: multispectral image analysis and archaeological survey. Vietri sul Mare, Italy

  51. Sankoff D (1972) Matching sequences under deletion/insertion constraints. Proceeding of National Academic Sciences, USA

  52. Schyndel RV, Tirkel A, Osborne CF (1994) A Digital Watermark

  53. Sellers P (1974) On the theory of computation of evolutionary distances. J Appl Math 26:787–493

    MathSciNet  MATH  Google Scholar 

  54. Smith T, Waterman M (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  Google Scholar 

  55. Takahashi K, Yaegashi S, Kameda A, Hagiya M (2005) Chain reaction systems based on loop dissociation of DNA. Canada

  56. Turner LF (1989) Digital data security system. s.l. Patent No. IPN WO 89/08915

  57. Waterman MS, Smith TF, Beyer WA (1976) Some Biological Sequence Metrics. Adv Math 20:367–387

    Article  MathSciNet  MATH  Google Scholar 

  58. Wong PC, Wong K-k, Foote H (2003) Organic data memory using the DNA approach. Commun ACM 46(1):95–98

    Article  Google Scholar 

  59. Wu X, Kan H (2015) A blind dual color images watermarking method via SVD and DNA sequences. Beijing, China

  60. Xie Z, Gao J, Wu K, Zhang J (2011) Brief survey on image semantic analysis and understanding. Dalian, China, s.n., pp. 179-183

  61. Xu K, Luxmoore AR, Davies T (1998) Sewer pipe deformation assessment by image analysis of video survey. Pattern Recogn 31(2):169–180

    Article  Google Scholar 

  62. Yazdi SMHT et al (2015) A rewritable, random-access DNA-based storage system. Sci Rep 5:14138

    Article  Google Scholar 

  63. Yim AK-Y et al (2014) The essential component in DNA-based information storage system: robust error-tolerating module. Front Bioeng Biotechnol 2:49

    Article  Google Scholar 

  64. Zeng W, Liu B (1999) A statistical watermark detection technique without using original images for resolving rightful ownerships of digital images. IEEE Trans Image Process 8:1534–1548

    Article  Google Scholar 

  65. Zhou CEL, Zemla AT, Lam MW (2007) Structure based analysis for identification of protein signatures: PSCORE Patent No United states Patent 20070244652

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Singh Garhwal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A.S., Yan, W.Q. BIIIA: a bioinformatics-inspired image identification approach. Multimed Tools Appl 78, 9537–9552 (2019). https://doi.org/10.1007/s11042-018-6551-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6551-y

Keywords