Skip to main content

Advertisement

Log in

MMVS/COE: mobile multi-view video streaming with constant order encoding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multi-view video systems are designed to allow users to watch 3D videos or a scene recorded by multiple cameras from multiple viewpoints. They are actually used by crowd sourced journalism services or to cover events using a set of wireless drones/sensors filming the same scene, etc. Multi-view videos are captured by multiple cameras at different positions with significant correlations between neighboring views. Owing to the increased data volume of multi-view video, highly efficient encoding techniques are needed. The common idea for Multi-View Video Coding (MVC) is to further exploit the redundancy between adjacent views. In this paper, we focus on the acquisition phase of the multi-view video system. We propose a Mobile Multi-view Video Streaming scheme with Constant Order Encoding (MMVS/COE). It encodes by exploiting the inter/intra-view dependency to reduce redundancy and optimize the tradeoff between traffic volume (bite rate) and video quality. Evaluations’ results show that MMVS/COE reduces traffic, compared to existing methods, mainly MVC/MC, by decreasing redundancies among video streams while maintaining video quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Artigas X, Angeli E, Torres L (2006) Side information generation for multiview distributed video coding using a fusion approach. 7th Nordic Signal Processing Symposium (NORSIG), Reykjavik

    Book  Google Scholar 

  2. Baruffa G (2014) PYUV: raw video sequence player software, Available at: http://dsplab.diei.unipg.it/software/pyuv_raw_video_sequence_player

  3. Beck S, Kunert A, Kulik A, Froehlich B (2013) Immersive group-togroup telepresence. IEEE Trans Vis Comput Graph 19(4):616–625

    Article  Google Scholar 

  4. FFMPEG Framework Website (2016) Available at: https://www.ffmpeg.org/

  5. Frederic D, Mourad O, Touradj E (2007) Recent advances in multi-view distributed video coding. In: Proceedings of SPIE - The International Society for Optical Engineering. https://doi.org/10.1117/12.719535

  6. Hamza A, Hefeeda M (2012) Energy-Efficient Multicasting of Multiview 3D Videos to Mobile Devices. ACM Trans Multimed Comput Commun Appl 8(3s):1–45:25

    Article  Google Scholar 

  7. IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. In: IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), pp 1–628. https://doi.org/10.1109/IEEESTD.2012.6392842

  8. ISO/IEC JTC1/SC29/WG11 (2005) Multiview video test sequences from MERL

  9. Jiang D, Li W, Lv H (2017) An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 2017(220):160–169

    Article  Google Scholar 

  10. Jiang D, Xu Z, Li W, Chen Z (2015) Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. J Syst Softw 2015(104):152–165

    Article  Google Scholar 

  11. Jiang D, Xu Z, Xu H (2015) A novel hybrid prediction algorithm to network traffic. Ann Telecommun 70(9):427–439

    Article  Google Scholar 

  12. Jiang D, Shi L, Zhang P, Ge X (2016) QoS constraints-based energy-efficient model in cloud computing networks for multimedia clinical issues. Multimedia Tools and Applications 75(22):14307–14328

    Article  Google Scholar 

  13. Kastrinakis M, Badawy G, Smadi MN (2017) Polychronis Koutsakis: Video frame size modeling for user-generated traffic in an enterprise-like environment. Comput Commun 109:24–37

    Article  Google Scholar 

  14. Li B, Liu J (2003) Multirate video multicast over the internet: An overview. IEEE Netw 17(1):24–29

    Article  Google Scholar 

  15. Li Z-G, Zhang Z-Y (2004) Real-time streaming and robust streaming H.264/AVC video. Image and Graphics (ICIG'04):353–356. https://doi.org/10.1109/ICIG.2004.119

  16. Liu J, Li B, Zhang Y-Q (2003) Adaptive video multicast over the internet. IEEE MultiMedia 10(1):22–33

    Article  Google Scholar 

  17. Lou J-G, Cai H, Li J (2005) A real-time interactive multi-view video system. In: Proceedings of the 13th annual ACM international conference on Multimedia (MULTIMEDIA '05). ACM, New York, pp 161–170. https://doi.org/10.1145/1101149.1101173

  18. Matrawy A, Lambadaris I (2003) A survey of congestion control schemes for multicast video applications. IEEE Communications Surveys and Tutorials 5(2):22–31

    Article  Google Scholar 

  19. Matusik W, Pfister H (2004) 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans Graph 24(3):811–821

    Google Scholar 

  20. Moustafa H, Zeadally S (2012) Media Networks: Architectures, Applications, and Standards. CRC Press, ISBN: 1466566582, 9781466566583

  21. Müller K, Schwarz H, Marpe D, Bartnik C, Bosse S, Brust H, Hinz T, Lakshman H, Merkle P, Rhee H et al (2013) 3d high efficiency video coding for multi-view video and depth data. IEEE Trans Image Process 22(9):3366–3378

    Article  MathSciNet  Google Scholar 

  22. Ouaret M, Dufaux F, Ebrahimi T (20060 Fusion-based multiview distributed video coding. In: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks (VSSN '06). ACM, New York, pp 139–144. https://doi.org/10.1145/1178782.1178803

  23. Ozcinar C, Ekmekcioglu E, Kondoz A (2013) Dynamic adaptive 3D multi-view video streaming over the internet. Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences – ImmersiveMe 13:51–56

    Article  Google Scholar 

  24. Pulipaka A, Seeling P, Reisslein M, Karam L (2013) Traffic and statistical multiplexing characterization of 3-D video representation formats. IEEE Trans Broadcast 59(2):382–389

    Article  Google Scholar 

  25. Seeling P, Reisslein M (2014) Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC. Sci World J 2014:1–16

    Article  Google Scholar 

  26. Shiho K, Takuya F, Shunsuke S, Takashi W (2015) Multi-view video streaming with mobile cameras. pp 1412–1417. https://doi.org/10.1109/GLOCOM.2014.7037006

  27. Shipeng L, Abdulmotaleb ES, Meng W, Tao M, Nicu S, Shuicheng Y, Richang H, Cathal G (2013) Advances in multimedia modeling: 19th International Conference, MMM 2013, Huangshan, China, January 7–9, 2013, Proceedings, Part I. https://doi.org/10.1007/978-3-642-35725-1

    Google Scholar 

  28. Sreedhar KK, Aminlou A, Hannuksela MM, Gabbouj M (2016) Standard-compliant multiview video coding and streaming for virtual reality applications. In: 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, pp 295–300. https://doi.org/10.1109/ISM.2016.0065

  29. Sullivan GJ, Ohm J-R, Wiegand T, Luthra A (2008) Joint Video Team of ITU-T VCEG and ISO/IEC MPEG JMVC (Joint Multiview Video Coding) Software

  30. Takuya F, Ziyuan P, Takashi W (2012) Traffic reduction for multiple users in multi-view video streaming. pp 182–187. https://doi.org/10.1109/ICME.2012.185

  31. Tanimoto M, Kazuyoshi S (2013) Global view and depth (gvd) format for ftv/3dtv. In: Three Dimensional Imaging Visualization and Display, pp 1–10

  32. Text of ISO/IEC 14496-10:2008/FDAM 1 ISO/IEC JTC1/SC29/WG11 (2008) Multiview video coding

  33. The Stanford Multi- Camera Array (2011). http://graphics.stanford.edu/projects/array/

  34. Triantafyllidis GA, Enis Çetin A, Smolic A, Onural L, Sikora T, Watson J (2008) 3DTV: capture, transmission, and display of 3D video. EURASIP Journal on Advances in Signal Processing 2009:585216

    Article  Google Scholar 

  35. Vetro A, Pandit P, Kimata H, Smolic A, Wang Y-K (2008) Joint Draft 8.0 on multi-view video coding. Joint VideoTeam, Doc. JVT-AB204

  36. Wilburn B (2004) High performance imaging using arrays of inexpensive

  37. Winkler S The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast. https://doi.org/10.1109/TBC.2008.2000733

    Article  Google Scholar 

  38. Wyner A, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Transaction on Information Theory 3(4):45–49

    MathSciNet  MATH  Google Scholar 

  39. Xun G, Yan L, Feng W, Wen G, Shipeng L (2006) Distributed multiview video coding. VCIP 38(11):1917–1921

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ballout.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballout, A., Ghaddar, A. & Wehbi, H. MMVS/COE: mobile multi-view video streaming with constant order encoding. Multimed Tools Appl 78, 10753–10772 (2019). https://doi.org/10.1007/s11042-018-6564-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6564-6

Keywords