Skip to main content
Log in

Fast Bi-dimensional empirical mode decomposition(BEMD) based on variable neighborhood window method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new method for BEMD. BEMD can decompose a source image into several two-dimensional intrinsic mode functions. During the image decomposition process, it is required to interpolate and draw the upper and lower envelopes. However, these interpolations and drawing the enveloping surface require a large amount of computing time and artificial screening. Thus, some scholars proposed the rapid realization of BEMD. Further, the window size being fixed during the decomposition process led to losses in the data-driven characteristics, adaptability and dimension consistency of the original BEMD. Therefore, this paper proposes a simple but effective means of keeping the original BEMD method features. The estimate reconstruction method is used to replace surface interpolation, and the variable neighborhood window method is adopted to replace the fixed neighborhood window method. In this article, an order filter is used to reconstruct the upper and lower envelopes, and then the filter size is obtained by using the fact that the image information itself is adaptively variable. Through an empirical analysis, this paper shows that this method can keep the original BEMD method’s rapid decomposition, data-driven characteristics, adaptivity and consistency of scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. An FP, Lin DC, Zhou XW et al (2015) Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect. Int J Antennas Propag 2015:1–12

    Article  Google Scholar 

  2. An FP, Lin DC, Zhou XW, Sun Z (2015) Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect. Int J Antennas Propag

  3. Bhuiyan SMA, Adhami RR, Khan JF (2008) A novel approach of fast and adaptive bidimensional empirical mode decomposition. Proc IEEE International Conference on Acoustics, Speech and Signal Processing. 1313–1316

  4. Bhuiyan SMA, Adhami RR, Khan JF (2008) Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J Adv Signal Process 2008(4):1–18

    Google Scholar 

  5. Bhuiyan SMA, Adhami RR, Khan JF (2008) Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation[J]. EURASIP J Adv Signal Process 2008(1):728356

    Article  Google Scholar 

  6. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Publications, New York

    Google Scholar 

  7. Cai B, Xiang J (2011) Digital image compression based on BEMD and PCA [J]. Comput Eng Appl 47(23):185–187

    Google Scholar 

  8. Cuiyun L, Pan H, Hongbing J (2011) A novel surface interpolation approach for bidimensional empirical mode decomposition[C]. In Network Computing and Information Security (NCIS) International Conference on, pp 335–338

  9. Damerval C (2005) A fast algorithm for bidimensional EMD. IEEE Signal Process Lett 12(10):701–704

    Article  Google Scholar 

  10. Ge G-t, Sang E-f, Liu Z-f et al (2010) Novel BEMD criterion for stopping sifting process. J Data Acquis Process 25(2):195–200

    Google Scholar 

  11. Haddadpour M, Daneshvar S, Seyedarabi H (2017) PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method[J]. Biom J 40(4):219–225

    Google Scholar 

  12. He Z, Wang Q, Shen Y et al (2013) Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Trans Instrum Meas 62(5):889–904

    Article  Google Scholar 

  13. HE Z et al (2013) Discrete multivariate gray model based boundary extension for bi-dimensional empirical mode decomposition. Signal Process 93(1):124–138

    Article  MathSciNet  Google Scholar 

  14. Hu J, Wang X, Qin H (2014) Improved, feature-centric EMD for 3D surface modeling and processing [J]. Graph Model 76(5):340–354

    Article  Google Scholar 

  15. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond A 454(12):903–995

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang NE, Wu M-LC, Long SR et al (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc A 459(2037):2317–2345

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim D, Park M, Oh HS (2012) Bidimensional statistical empirical mode de- composition. IEEE Signal Process Lett 19(4):191–194

    Article  Google Scholar 

  18. Liu Z, Peng S (2005) Boundary processing of bidimensional EMD using texture synthesis. IEEE Signal Process Lett 12(1):33–36

    Article  Google Scholar 

  19. Liu H, Sun D, Xiong K et al (2014) A hybrid approach to protect palmprint templates[J]. Sci World J (2014-3-27), 2014, 2014(12):686754

  20. Liu H, Sun D, Xiong K et al (2014) Palmprint based multidimensional fuzzy vault scheme [J]. Sci World J 2014(1):819031

    Google Scholar 

  21. Lu H, Zhang L, Serikawa S (2012) Maximum local energy: an effective approach for multisensor image fusion in beyond wavelet transform domain [J]. Comput Math Appl 64(5):996–1003

    Article  MATH  Google Scholar 

  22. Nan D, Bi D-y, Xu Y-l et al (2011) Retinex color image enhancement based on adaptive bidimensional empirical mode decomposition. J Comput Appl 31(6):1552–1559

    Google Scholar 

  23. Nunes JC, Bouaouue Y, Delechelle E et al (2003) Image analysis by dimensional empirical mode decomposition. Image Vis Comput 21(3):1019–1026

    Article  Google Scholar 

  24. Nunes JC, Guyot S, Delechelle E (2005) Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Mach Vis Appl 16(5):177–188

    Article  Google Scholar 

  25. Qiao LH, Niu KF, Wang N et al (2011) Perfect reconstruction image modulation based on BEMD and quaternionic analytic signals. Sci China Inf Sci 54(12):2602–2614

    Article  MathSciNet  Google Scholar 

  26. Rilling G, Flandrin P, Gancalves P (2003) On empirical mode decomposition and its algorithms. Proc IEEE-EURASIP Workshop Nonlinear Signal Image Process 3:8–11

    Google Scholar 

  27. Trusiak M, Patorski K (2012) Space domain interpretation of incoherent moiré superimpositions using FABEMD. Proc 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics. 869704–869708

  28. Trusiak M, Patorski K (2013) Processing and phase analysis of fringe patterns with contrast reversals. Opt Express 21(19):22596–22609

    Article  Google Scholar 

  29. Van Tung T, Yang B-S, Gu F et al (2013) Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis. Mech Syst Signal Process 38(2):601–614

    Article  Google Scholar 

  30. Wu Z, Huang NE, Chen X (2009) The multi-dimenstional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1(5):339–372

    Article  MathSciNet  Google Scholar 

  31. Xiong CZ, Xu JY, Zou JC et al (2006) Texture classification based on EMD and FFT. J Zhejiang Univ (Sci A) 7(9):1516–1521

    Article  MATH  Google Scholar 

  32. Yang ZH, Qi DX, Yang LH (2004) Signal period analysis based on Hilbert-Huang transform and its application to texture analysis[C]. IEEE Proc Third Int Conf on Image and Graphics pp 430–433

  33. Ye Q, Xiang M, Cui Z (2012) Fingerprint image enhancement algorithm based on two dimension emd and gabor filter. Procedia Eng 29:1840–1844

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation Project of P. R. China (No. 61701188) and the Foundation of Science and Technology on Information Assurance Laboratory (No.KJ-17-101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmin Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhou, X. & An, F. Fast Bi-dimensional empirical mode decomposition(BEMD) based on variable neighborhood window method. Multimed Tools Appl 78, 8889–8910 (2019). https://doi.org/10.1007/s11042-018-6629-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6629-6

Keywords

Navigation